
Data Structures-2

Prof. K. Adisesha
 BE, M.Sc., M.Th., NET, (Ph.D.)

2

Learning objectives

Objective

• Linear data structures

• Type Linear data structures

 Stacks – PUSH, POP using a list (Single Data, Multiple Data)

 Queue- INSERT, DELETE using a list (Single Data, Multiple Data)

• Implementation in Python

3

Data Structure

What is Data Structure ?

• Data structures are a way of organizing and storing data so

that they can be accessed and worked with efficiently.

• Linear Data Structures

 Data collections of ordered items

 Order depends on how items are

 added and removed

 Once added item stays in position

 Examples: stacks, queues

4

Linear Data Structure

Characteristics Linear Data Structures:

• Two ends (left – right, front – rear)

• Linear structures distinguished by how items are added and
removed

• Additions of new items only allowed at the end

• Deletion of existing items only allowed at the end

• Appear in many algorithms

5

Linear Data Structure

Stack:

• Stacks are linear Data Structures which are based on the principle
of Last-In-First-Out (LIFO) where data which is entered last will
be the first to get accessed.

 Addition/removal of items always takes place at same end (top)

 Base represents bottom and contains item has been in stack the
longest

 Most recently added to be removed first (last in-first-out, LIFO)

 Top: newer items;

 bottom: lower items

6

Stack

Operations of Stack

• PUSH: pushing (adding) elements into Top of Stack,

• POP: Popping (deleting) elements and accessing elements from Top of
Stack.

• TOP: This TOP is the pointer to the current position of the stack.

7

Stack

Applications Using Stacks

• Stacks are prominently used in applications such as:

 Recursive Programming

 Reversing words

 Expression Conversion

• In-fix to Post-fix

 Backtracking

 Undo mechanisms in word editors

 Check if delimiters are matched

• Matching of opening and closing symbols: {,},[,],(,)

• Check: {{a}[b]{[{c}](d(e)f)}((g))} and ({[a}b(c)])

8

Stack

Stack - Abstract Data Type

• Stack() creates a new, empty stack; no parameters and returns an
empty stack.

• push(item) adds a new item at top of stack; needs the item and
returns nothing.

• pop() removes top item; needs no parameters, returns item, stack is
modified

• peek() returns top item from the stack but doesn’t remove it; needs no
parameters, stack is not modified

• isEmpty() test if stack is empty; needs no parameters, returns a
boolean value

• size() returns number of items on stack; needs no parameters; returns
an integer

9

Stack

Implementing Stack using List in Python

10

Stack

Implementing Stack using List in Python

#Program to implement Stack Operation on Single data
def push(stack,x): #function to add element at the end of list

 stack.append(x)

def pop(stack): #function to remove last element from list

 n = len(stack)

 if(n<=0):

 print("Stack empty....Pop not possible")

 else:

 stack.pop()

def display(stack): #function to display stack entry

 if len(stack)<=0:

 print("Stack empty...........Nothing to display")

 for i in stack:

 print(i,end=" ")

11

Stack
#main program starts from here
x=[]

choice=0

while (choice!=4):

 print("********Stack Menu***********")

 print("1. push(INSERT)")

 print("2. pop(DELETE)")

 print("3. Display ")

 print("4. Exit")

 choice = int(input("Enter your choice :"))

 if(choice==1):

 value = int(input("Enter value "))

 push(x,value)

 if(choice==2):

 pop(x)

 if(choice==3):

 display(x)

 if(choice==4):

 print("You selected to close this program")

12

Queue

Queue

• A queue is also a linear data structure which is based on the
principle of First-In-First-Out (FIFO)

• where the data entered first will be accessed first.

• It has operations which can be performed from both ends of the
Queue, that is, head-tail or front-back.

 En-Queue: Add items on one end

 De-Queue: Remove items on the other end

13

Queue

Queue

• A queue is also a linear data structure which is based on the
principle of First-In-First-Out (FIFO)

 En-Queue: Add items on one end (Rear)

 De-Queue: Remove items on the other end (Front)

14

Queue

Applications of Queues

• Queues are used in various applications:

 In network equipment like switches and routers

 Network Buffers for traffic congestion management

 Operating Systems for Job Scheduling

 Checkout line

 Printer queue

 Take-off at airport

15

Queue

Queue - Abstract Data Type

• Queue() creates a new, empty queue; no parameters and
returns an empty queue.

• enqueue(item) adds a new item to rear of queue; needs the
item and returns nothing.

• dequeue() removes front item; needs no parameters, returns
item, queue is modified

• isEmpty() test if queue is empty; needs no parameters, returns
a boolean value

• size() returns number of items in the queue; needs no
parameters; returns an integer

16

Queue

Implementing Queue in Python

17

Queue

Implementing Queue using List in Python

def add_element(Queue,x): #function to add element at the end of list

 Queue.append(x)

def delete_element(Queue): #function to remove last element from list

 n = len(Queue)

 if(n<=0):

 print("Queue empty....Deletion not possible")

 else:

 del(Queue[0])

def display(Queue): #function to display Queue entry

 if len(Queue)<=0:

 print("Queue empty...........Nothing to display")

 for i in Queue:

 print(i,end=" ")

18

Queue
#main program starts from here
x=[]

choice=0

while (choice!=4):

 print(" ********Queue menu***********")

 print("1. Add Element ")

 print("2. Delete Element")

 print("3. Display ")

 print("4. Exit")

 choice = int(input("Enter your choice : "))

 if(choice==1):

 value = int(input("Enter value : "))

 add_element(x,value)

 if(choice==2):

 delete_element(x)

 if(choice==3):

 display(x)

 if(choice==4):

 print("You selected to close this program")

19

• We learned about:

 Linear data structures

 Type Linear data structures

• Stacks – PUSH, POP using a list (Single Data, Multiple Data)

• Queue- INSERT, DELETE using a list (Single Data, Multiple Data)

 Implementation in Python

Thank you

Conclusion!

