
Data Structures-2

Prof. K. Adisesha
 BE, M.Sc., M.Th., NET, (Ph.D.)

2

Learning objectives

Objective

• Linear data structures

• Type Linear data structures

 Stacks – PUSH, POP using a list (Single Data, Multiple Data)

 Queue- INSERT, DELETE using a list (Single Data, Multiple Data)

• Implementation in Python

3

Data Structure

What is Data Structure ?

• Data structures are a way of organizing and storing data so

that they can be accessed and worked with efficiently.

• Linear Data Structures

 Data collections of ordered items

 Order depends on how items are

 added and removed

 Once added item stays in position

 Examples: stacks, queues

4

Linear Data Structure

Characteristics Linear Data Structures:

• Two ends (left – right, front – rear)

• Linear structures distinguished by how items are added and
removed

• Additions of new items only allowed at the end

• Deletion of existing items only allowed at the end

• Appear in many algorithms

5

Linear Data Structure

Stack:

• Stacks are linear Data Structures which are based on the principle
of Last-In-First-Out (LIFO) where data which is entered last will
be the first to get accessed.

 Addition/removal of items always takes place at same end (top)

 Base represents bottom and contains item has been in stack the
longest

 Most recently added to be removed first (last in-first-out, LIFO)

 Top: newer items;

 bottom: lower items

6

Stack

Operations of Stack

• PUSH: pushing (adding) elements into Top of Stack,

• POP: Popping (deleting) elements and accessing elements from Top of
Stack.

• TOP: This TOP is the pointer to the current position of the stack.

7

Stack

Applications Using Stacks

• Stacks are prominently used in applications such as:

 Recursive Programming

 Reversing words

 Expression Conversion

• In-fix to Post-fix

 Backtracking

 Undo mechanisms in word editors

 Check if delimiters are matched

• Matching of opening and closing symbols: {,},[,],(,)

• Check: {{a}[b]{[{c}](d(e)f)}((g))} and ({[a}b(c)])

8

Stack

Stack - Abstract Data Type

• Stack() creates a new, empty stack; no parameters and returns an
empty stack.

• push(item) adds a new item at top of stack; needs the item and
returns nothing.

• pop() removes top item; needs no parameters, returns item, stack is
modified

• peek() returns top item from the stack but doesn’t remove it; needs no
parameters, stack is not modified

• isEmpty() test if stack is empty; needs no parameters, returns a
boolean value

• size() returns number of items on stack; needs no parameters; returns
an integer

9

Stack

Implementing Stack using List in Python

10

Stack

Implementing Stack using List in Python

#Program to implement Stack Operation on Single data
def push(stack,x): #function to add element at the end of list

 stack.append(x)

def pop(stack): #function to remove last element from list

 n = len(stack)

 if(n<=0):

 print("Stack empty....Pop not possible")

 else:

 stack.pop()

def display(stack): #function to display stack entry

 if len(stack)<=0:

 print("Stack empty...........Nothing to display")

 for i in stack:

 print(i,end=" ")

11

Stack
#main program starts from here
x=[]

choice=0

while (choice!=4):

 print("********Stack Menu***********")

 print("1. push(INSERT)")

 print("2. pop(DELETE)")

 print("3. Display ")

 print("4. Exit")

 choice = int(input("Enter your choice :"))

 if(choice==1):

 value = int(input("Enter value "))

 push(x,value)

 if(choice==2):

 pop(x)

 if(choice==3):

 display(x)

 if(choice==4):

 print("You selected to close this program")

12

Queue

Queue

• A queue is also a linear data structure which is based on the
principle of First-In-First-Out (FIFO)

• where the data entered first will be accessed first.

• It has operations which can be performed from both ends of the
Queue, that is, head-tail or front-back.

 En-Queue: Add items on one end

 De-Queue: Remove items on the other end

13

Queue

Queue

• A queue is also a linear data structure which is based on the
principle of First-In-First-Out (FIFO)

 En-Queue: Add items on one end (Rear)

 De-Queue: Remove items on the other end (Front)

14

Queue

Applications of Queues

• Queues are used in various applications:

 In network equipment like switches and routers

 Network Buffers for traffic congestion management

 Operating Systems for Job Scheduling

 Checkout line

 Printer queue

 Take-off at airport

15

Queue

Queue - Abstract Data Type

• Queue() creates a new, empty queue; no parameters and
returns an empty queue.

• enqueue(item) adds a new item to rear of queue; needs the
item and returns nothing.

• dequeue() removes front item; needs no parameters, returns
item, queue is modified

• isEmpty() test if queue is empty; needs no parameters, returns
a boolean value

• size() returns number of items in the queue; needs no
parameters; returns an integer

16

Queue

Implementing Queue in Python

17

Queue

Implementing Queue using List in Python

def add_element(Queue,x): #function to add element at the end of list

 Queue.append(x)

def delete_element(Queue): #function to remove last element from list

 n = len(Queue)

 if(n<=0):

 print("Queue empty....Deletion not possible")

 else:

 del(Queue[0])

def display(Queue): #function to display Queue entry

 if len(Queue)<=0:

 print("Queue empty...........Nothing to display")

 for i in Queue:

 print(i,end=" ")

18

Queue
#main program starts from here
x=[]

choice=0

while (choice!=4):

 print(" ********Queue menu***********")

 print("1. Add Element ")

 print("2. Delete Element")

 print("3. Display ")

 print("4. Exit")

 choice = int(input("Enter your choice : "))

 if(choice==1):

 value = int(input("Enter value : "))

 add_element(x,value)

 if(choice==2):

 delete_element(x)

 if(choice==3):

 display(x)

 if(choice==4):

 print("You selected to close this program")

19

• We learned about:

 Linear data structures

 Type Linear data structures

• Stacks – PUSH, POP using a list (Single Data, Multiple Data)

• Queue- INSERT, DELETE using a list (Single Data, Multiple Data)

 Implementation in Python

Thank you

Conclusion!

