@ python’
Data Structures-2

Prof. K, Adisesha

BE, M.Sc., M.Th., NET, (Ph.D.)

[d Learning objectives

Objective
e Linear data structures
e Type Linear data structures
= Stacks — PUSH, POP using a list (Single Data, Multiple Data)
= Queue- INSERT, DELETE using a list (Single Data, Multiple Data)

e Implementation in Python

a Data Structure

What is Data Structure ?

o Data structures are a way of organizing and storing data so

that they can be accessed and worked with efficiently.

e Linear Data Structures

Data collections of ordered items

Order depends on how items are
added and removed

Once added item stays in position

Examples: stacks, queues

(Insert)

= .

4
¥

List

Single/Multiple DATA)

& POP)

(Delete)

Linear Data Structure

Characteristics Linear Data Structures:

e Two ends (left — right, front — rear)

e Linear structures distinguished by how items are added and
removed

o Additions of new items only allowed at the end
e Deletion of existing items only allowed at the end
e Appear in many algorithms

[d Linear Data Structure

Stack:

e Stacks are linear Data Structures which are based on the principle
of Last-In-First-Out (LIFO) where data which is entered last will
be the first to get accessed.

= Addition/removal of items always takes place at same end (top)
= Base represents bottom and contains item has been in stack the

longest
= Most recently added to be removed first (last in-first-out, LIFO)
= Top: newer items; PoUSH] =
= bottom: lower items ol (DELETE)
Stack
top =-1]
(Empty List)

0 = N W &

[Stack

Operations of Stack
e PUSH: pushing (adding) elements into Top of Stack,

e POP: Popping (deleting) elements and accessing elements from Top of
Stack.

e TOP: This TOP is the pointer to the current position of the stack.

FLSH and POP Operation in Stack
R 4 4 4 4 1 -
e— — [E— —_—— | S—
: t 3
3 | 3 3 i. o 3| |l 3] -
- 2 219 3|9 |4mtop 2 B 7_‘top
p— e prm— pr—
1 1|6 [@mtop 1 |6 | 116 1 [6 |4mtop 1 [6
0|5 |@mtop 0|5 0|5 0|5 015 0|5
Por IO R S
PUSH 2

[Stack

Applications Using Stacks

e Stacks are prominently used in applications such as:
= Recursive Programming
= Reversing words
Expression Conversion
o In-fix to Post-fix
Backtracking
Undo mechanisms in word editors

Check if delimiters are matched
e Matching of opening and closing symbols: {,},[,1,(,)

* Check: {{a}[b[{c}](d(e)f)}((g9))} and ({[a}b(c)])

Stack

Stack - Abstract Data Type

Stack() creates a new, empty stack; no parameters and returns an
empty stack.

push(item) adds a new item at top of stack; needs the item and
returns nothing.

pop() removes top item; needs no parameters, returns item, stack is
modified

peek() returns top item from the stack but doesn’t remove it; needs no
parameters, stack is not modified

ISEmpty() test if stack is empty; needs no parameters, returns a
boolean value

size() returns number of items on stack; needs no parameters; returns
an integer

Implementing Stack using List in Python
StackList:‘

{ -
.items = []

isEmpty(B

AfFewms=— [}

push , item) :
.items.insert(9, item)

pop()=
Ul] .items.pop(O6)
peek(
etu .items [@]
size(
et .items)

[Stack

Implementing Stack using List in Python

#Program to implement Stack Operation on Single data
def push(stack,x): #function to add element at the end of list
stack.append(x)
def pop(stack): #function to remove last element from list
n = len(stack)
if(n<=0):
print("Stack empty....Pop not possible™)
else:
stack.pop()
def display(stack): #function to display stack entry
if len(stack)<=0:
print("Stack empty........... Nothing to display")
for i in stack:
print(i,end="")

9 10

[Stack

#main program starts from here
x=[]
choice=0
while (choice!=4):
print("********Stack Menu***********")
print("1. push(INSERT)")
print("2. pop(DELETE)")
print("3. Display ")
print("4. Exit")
choice = int(input("Enter your choice :"))
if(choice==1):
value = int(input("Enter value "))
push(x,value)
if(choice==2):
pop(x)
if(choice==3):
display(x)
if(choice==4):
"B print("You selected to close this program") 11

Queue

e A queue is also a linear data structure which is based on the
principle of First-In-First-Out (FIFO)

e where the data entered first will be accessed first.

e It has operations which can be performed from both ends of the
Queue, that is, head-tail or front-back.

= En-Queue: Add items on one end
= De-Queue: Remove items on the other end

:_...- &«
0
[POP)

| DELETE)

FIFO (First In First Out)

Rear=Front=-1
Empty List

12

Queue

e A queue is also a linear data structure which is based on the
principle of First-In-First-Out (FIFO)
= En-Queue: Add items on one end (Rear)
= De-Queue: Remove items on the other end (Front)

QEEsp | 5 sy (3|79
/0\1 2 3 4 5 0 1 2 3 4
[Front . |
EEEw | 5|3 Ky | 7|9
0 1 2 3 4) 0 1 2 3
+ * o
FrontRear
Bl 17D v SEAEIE
0 1 2 3 4 5
& * 0 .
Front

Applications of Queues

e Queues are used in various applications:
= In network equipment like switches and routers
= Network Buffers for traffic congestion management
Operating Systems for Job Scheduling
Checkout line
Printer queue
Take-off at airport

14

Queue - Abstract Data Type

Queue() creates a new, empty queue; no parameters and
returns an empty queue.

enqueue(item) adds a new item to rear of queue; needs the
item and returns nothing.

dequeue() removes front item; needs no parameters, returns
item, queue is modified

ISEmpty() test if queue is empty; needs no parameters, returns
a boolean value

size() returns number of items in the queue; needs no
parameters; returns an integer

15

Implementing Queue in Python
Queue:
| () :

.1tems = []

isEmpty() :
| .1tems == |[]

enqueue (, item):
.1tems.insert(9, item)

dequeue (}'E
t .items.pop()

.items)

Queue
g=Queue()

q.enqueue(4)

q.enqueue(

q.enqueue()
(q.size())

)

Queue

Implementing Queue using List in Python
def add_element(Queue,x): #function to add element at the end of list
Queue.append(x)
def delete_element(Queue): #function to remove last element from list
n = len(Queue)
if(n<=0):
print("Queue empty....Deletion not possible™)
else:
del(Queue[0])
def display(Queue): #function to display Queue entry
if len(Queue)<=0:
print("Queue empty........... Nothing to display")
for i in Queue:
print(i,end="")

=

#main program starts from here
x=[]

choice=0

while (choice!=4):

print(" *¥¥*k¥*Rk**XQueue menukrRkrRkkRkkAN)
print("1. Add Element ")
print("2. Delete Element™)
print("3. Display ")
print("4. Exit")
choice = int(input("Enter your choice : "))
if(choice==1):
value = int(input("Enter value : "))
add_element(x,value)
if(choice==2):
delete_element(x)
if(choice==3):
display(x)
if(choice==4):
print("You selected to close this program")

18

Conclusion!

e We learned about:
= Linear data structures

= Type Linear data structures
e Stacks — PUSH, POP using a list (Single Data, Multiple Data)
e Queue- INSERT, DELETE using a list (Single Data, Multiple Data)

= Implementation in Python

Thank you

