
Data Structures-1

Prof. K. Adisesha
 BE, M.Sc., M.Th., NET, (Ph.D.)

2

Learning objectives

• Introduction

• Data Structure Types

 Primitive Data Structure

 Non-Primitive Data Structure

• List Manipulations

• Data Structure Operations

3

Data Structure

What is Data Structure ?

• Data structures are a way of organizing and storing data so

that they can be accessed and worked with efficiently.

• Data structures and algorithms are closely related

 Representation and organization of data

 Facilitate access and modification of data

 Different data structures have strengths and weaknesses

 Better suited for a specific algorithm than others

4

Data Structure

Data Structure using Python

• We will use Python as programming language

• Data structures and algorithms are independent of

programming language

 This is not a basic programming course

 We focus on higher level issues

 You should already have experience with a programming

language (Python, Java, C/C++)

5

Data Structure

Primitive Data Structures

• These are the most primitive or the basic data structures.

• They are the building blocks for data manipulation and
contain pure, simple values of a data.

• Python has four primitive variable types:

 Integers

 Float

 Strings

 Boolean

6

Data Structure

Non-Primitive Data Structures

• Non-Primitive Data Structures are the sophisticated
members of the data structure family.

• They don't just store a value, but rather a collection of
values in various formats.

• In the traditional computer science world, the non-primitive
data structures are divided into:

 Arrays

 Lists

 Tuples

 Dictionary

 Sets

 Files

7

Data Structure

Types of Data Structures in Python

• Built-in Data Structures

• User-Defined Data Structures

8

Data Structure

Built-in Data Structures

• Data Structures are built-in with Python which makes
programming easier and helps programmers use them to
obtain solutions faster.

• Built-in Data Structures in Python

 List

 Dictionary

 Tuple

 Sets

9

List

LIST

• Lists in Python are used to store collection of heterogeneous
items.

• These are mutable, which means that you can change their
content without changing their identity.

• You can recognize lists by their square brackets [and] that hold
elements, separated by a comma ,.

• There are addresses assigned to every element of the list, which
is called as Index.

• The index value starts from 0 and goes on until the last element
called the positive index.

• There is also negative indexing which starts from -1 enabling you
to access elements from the last to first.

10

List Manipulation

List Manipulation

• Python provides many methods to manipulate and work with lists.

• Common list manipulations Functions are:

 Adding new items to a list,

 Removing some items from a list,

 Sorting or reversing a list are.

 Find length of the list.

 Find the index value of value passed in List.

 Find the count of the value passed to List.

11

List Manipulation

Adding Elements

• Adding the elements in the list can be achieved using:

 append() function

 extend() function

 insert() function

12

List Manipulation

append() function

• The append() function adds all the elements passed to it as
a single element.

• Example:

my_list = [1, 2, 3]

print(my_list)

my_list.append([4, 5,6]) #add as a single element

print(my_list)

 Output:

[1, 2, 3]

[1, 2, 3, [4, 5, 6]]

13

List Manipulation

extend() function

• The extend() function adds the elements one-by-one into
the list.

• Example:

my_list = [1, 2, 3]

print(my_list)

my_list.extend([4, 5]) #add as different elements

print(my_list)

 Output:

[1, 2, 3]

[1, 2, 3, 4, 5]

14

List Manipulation

insert() function

• The insert() function adds the element passed to the index
value and increase the size of the list too.

• Example:

my_list = [1, 2, 3]

print(my_list)

my_list.insert(1, ‘Sunny') #add element at 1

print(my_list)

 Output:

[1, 2, 3]

[1, ‘Sunny’, 2, 3, 4, 5]

15

List Manipulation

Deleting Elements

• del keyword

 To delete elements, use the del keyword which is built-in
into Python but this does not return anything back to us.

• pop() function

 If you want the element back, you use the pop() function
which takes the index value.

• remove() function.

 To remove an element by its value, you use the remove()
function.

• clear() function

 To remove all elements from the list, to make an empty list
we use the clear() function.

16

List Manipulation

del keyword

• To delete elements, use the del keyword which is built-in
into Python but this does not return anything back to us.

• Example:

my_list = [10, ‘Sunny’, 20, 30, 40, 50]

print(my_list)

del my_list[5] #delete element at index 4

print(my_list)

 Output:

[10, ‘Sunny’, 20, 30, 40, 50]

[10, ‘Sunny’, 20, 30, 50] #after deleting index 4

17

List Manipulation

pop() function

• If you want the element back, you use the pop() function

which takes the index value.

• Example:

my_list = [10, ‘Sunny’, 20, 30, 40, 50]

print(my_list)

a = my_list.pop(1) #pop element from list

print('Popped Element: ', a, ' List remaining: ', my_list)

 Output:

[10, ‘Sunny’, 20, 30, 40, 50]

'Popped Element: Sunny List remaining: [10, 20, 30, 40, 50]

18

List Manipulation

remove() function

• To remove an element by its value, you use the remove()
function.

• Example:

my_list = [10, ‘Sunny’, 20, 30, 40, 50]

print(my_list)

my_list.remove(‘Sunny') #remove element with value

print(my_list)

 Output:

[10, ‘Sunny’, 20, 30, 40, 50]

[10, 20, 30, 40, 50] #after deleting ‘Sunny’

19

List Manipulation

clear() function

• To remove all elements from the list, to make an empty list
we use the clear() function.

• Example:

my_list = [10, ‘Sunny’, 20, 30, 40, 50]

print(my_list)

my_list.clear() #empty the list

print(my_list)

 Output:

[10, ‘Sunny’, 20, 30, 40, 50]

[] #empty the list

20

List Manipulation

Accessing Elements

• Accessing elements from a List is done by range of indexes
by specifying start and end position of the range.

• When specifying a range, the return value will be a new list
with the specified items.

• Example:
my_list = [10, 20, 30, 40, 50]

for element in my_list: #access elements one by one

 print(element)

Output:

10, 20, 30, 40, 50

21

List Manipulation
Accessing Elements

• You pass the index values and hence can obtain the values
as needed.

• Example:
my_list = [10, [‘Sunny’, 20, 30, 40], 50]

print(my_list)

Output: [10, [‘Sunny’, 20, 30, 40], 50]

len(my_list)

Output: 3

print(my_list[1])

Output: [‘Sunny’, 20, 30, 40]

print([1][0])

Output: [‘Sunny’]

print([1][0][-4])

Output: ’u’

22

List Manipulation
Copy a List:

• There are ways to make a copy, one-way is to use the built-in copy(),
list() method.

• copy() method: Make a copy of a list:

 Example
StuList = ["Prajwal", "Sunny", "Rekha"]

mylist = StuList.copy()

print(mylist)

Output: ['Prajwal', 'Sunny', 'Rekha']

• list() method: Make a copy of a list:

 Example
StuList = ["Prajwal", "Sunny", "Rekha"]

mylist = list(StuList)

print(mylist)

Output: ['Prajwal', 'Sunny', 'Rekha']

23

List Manipulation
Count(): You can count the number of element of a kind:

 Example

my_list = [10, 20, 10, 40, 10]

my_list.count(10)

Output: 3

Sort(): There is a sort() method that performs an in-place sorting:

 Example
StuList = my_list = [10, 20, 10, 40, 10]

my_list.sort()

print(my_list)

Output: [10, 10, 10, 20, 40]

Reverse: Finally, you can reverse the element in-place:

 Example
my_list = ['a', 'c' ,'b']

my_list.reverse()

print(my_list)

Output: ['b', 'c', 'a']

24

List Methods
Built-in Python list methods

• Following is the table containing the set of built-in methods that you can
use on List.

 Method Description

append() It adds a new element to the end of the list.

extend() It extends a list by adding elements from another list.

insert() It injects a new element at the desired index.

remove() It deletes the desired element from the list.

pop() It removes as well as returns an item from the given position.

clear() It flushes out all elements of a list.

count() It returns the total no. of elements passed as an argument.

sort() It orders the elements of a list in an ascending manner.

reverse() It inverts the order of the elements in a list.

copy() It performs a shallow copy of the list and returns.

len() The return value is the size of the list.

https://www.techbeamers.com/list-append/
https://www.techbeamers.com/python-list-extend/
https://www.techbeamers.com/python-list-insert/
https://www.techbeamers.com/python-list-remove/
https://www.techbeamers.com/python-list-pop/
https://www.techbeamers.com/python-list-clear/
https://www.techbeamers.com/python-list-count/
https://www.techbeamers.com/python-list-sort/
https://www.techbeamers.com/python-list-reverse/
https://www.techbeamers.com/python-list-copy/

25

SEARCHING
SEARCHING ALGORITHMS

26

SORTING
SORTING ALGORITHMS

27

• We learned about:

 Data Structure Definition

 Data Structure Types

 Primitive Data Structure

 Non-Primitive Data Structure

 List Manipulations

 Data Structure Operations

Thank you

Conclusion!

