
File Handling-2

2

Learning objectives

• Understanding Files Cont.,

• Binary files

• CSV (Comma separated values) files

• Opening and Closing Files

• Reading and Writing Files

• Using Pickel module

3

Types of Files

• The data files are the files that store data pretaning to a

specific application, for later use.

• Python allow us to create and manage three types of file

1. TEXT FILE

2. BINARY FILE

3. CSV (Comma separated values) files

4

BINARY FILE

What is Binary File?

• A binary file contains arbitrary binary data i.e. numbers
stored in the file, can be used for numerical operation(s).

• So when we work on binary file, we have to interpret the
raw bit pattern(s) read from the file into correct type of data
in our program.

• In the case of binary file it is extremely important that we
interpret the correct data type while reading the file.

• Python provides special module(s) for encoding and
decoding of data for binary file.

5

DIFFERENCE BETWEEN TEXT
FILES AND BINARY FILES

Text Files Binary Files

Text Files are sequential files A Binary file contain arbitrary binary data

Text files only stores texts

Binary Files are used to store binary data
such as image, video, audio, text

There is a delimiter EOL (End of Line \n) There is no delimiter

Due to delimiter text files takes more
time to process. while reading or writing
operations are performed on file.

No presence of delimiter makes files to
process fast while reading or writing
operations are performed on file.

Text files easy to understand because
these files are in human readable form

Binary files are difficult to understand

Text files are having extension .txt Binary files are having .dat extension

Programming on text files are very easy. Programming on binary files are difficult

Less prone to get corrupt as changes
reflect as soon as the file is opened and
can easily be undone

Can easily get corrupted, even a single bit
change may corrupt the file.

6

BINARY FILES

CREATING BINARY FILES

SEEING CONTENT OF BINARY FILE

Content of binary file which is in codes.

7

Python File Open

• The key function for working with files in Python is the open() function.

• The open() function takes two parameters; filename, and mode.

• There are four different methods (modes) for opening a file:

 "r" - Read - Default value. Opens a file for reading, error if the file does not
exist

 "a" - Append - Opens a file for appending, creates the file if it does not exist

 "w" - Write - Opens a file for writing, creates the file if it does not exist

 "x" - Create - Creates the specified file, returns an error if the file exists

• In addition you can specify if the file should be handled as binary or text
mode

 "t" - Text - Default value. Text mode

 "b" - Binary - Binary mode (e.g. images)

• These are the default modes. The file pointer is placed at the beginning
for reading purpose, when we open a file in this mode.

8

FILE ACCESS MODES
• A file mode governs the type of operations like read/write/append

possible methods in the opened file.

 MODE Operations on File Opens in

 r+ Text File Read & Write Mode

 rb+ Binary File Read Write Mode

 w Text file write mode

 wb Text and Binary File Write Mode

 w+ Text File Read and Write Mode

 wb+ Text and Binary File Read and Write Mode

 a Appends text file at the end of file, a file is created not exists.

 ab Appends both text and binary files at the end of file

 a+ Text file appending and reading.

 ab+ Text and Binary file for appending and reading.

• Example: f=open(“tests.dat”, ‘ab+’)

tests.dat is binary file and is opened in both modes that is reading and
appending.

9

RANDOM ACCESS METHODS

• All reading and writing functions discussed till now,
work sequentially in the file.

• To access the contents of file randomly –following

methods.

1. seek method

2. tell method

10

RANDOM ACCESS METHODS

Seek() method :
• seek()method can be used to position the file object at

particular place in the file.
syntax is :

fileobject.seek(offset [, from_what])

• Here offset is used to calculate the position of fileobject in
the file in bytes. Offset is added to from_what (reference
point) to get the position.

• Value reference point:
0 -beginning of the file
1 -current position of file
2 -end of file

• Default value of from_what is 0, i.e. beginning of the file.
Example: f.seek(7)

• keeps file pointer at reads the file content from 8th position onwards to till EOF.

11

RANDOM ACCESS METHODS

tell method
• tell() method returns an integer giving the current position of object

in the file.
• The integer returned specifies the number of bytes from the

beginning of the file till the current position of file object.
Syntax:

fileobject.tell()
• tell() method returns an integer and assigned to pos variable. It is

the current position from the beginning of file.

12

Closing Files

• close()- method will free up all the system resources used
by the file, this means that once file is closed, we will not be
able to use the file object any more.

• fileobject. close() will be used to close the file object, once
we have finished working on it.

• Syntax

 <fileHandle>.close()

• For example:

fout.close()

Note: You should always close your files, in some cases, due to buffering,
changes made to a file may not show until you close the file.

13

PYTHON FILE OBJECT
ATTRIBUTES

• File attributes give information about the file and file state.

Attribute Function

name Returns the name of the file

closed Returns true if file is closed. False otherwise.

mode The mode in which file is open.

softspace

Returns a Boolean that indicates whether a
space character needs to be printed before
another value
when using the print statement.

14

PICKELING AND UNPICKLING USING
PICKEL MODULE

• Use the python module pickle for structured data such as list or
directory to a file.

• PICKLING refers to the process of converting the structure to a byte
stream before writing to a file.

• while reading the contents of the file, a reverse process called
UNPICKLING is used to convert the byte stream back to the original
structure.

• First we need to import the module, It provides two main methods for
the purpose:-

1) dump() method

2) load() method

15

pickle.dump() Method

• Use pickle.dump() method to write the object in file which is opened in binary
access mode.

Syntax of dump method is:

dump(object,fileobject)

• A program to write list sequence in a binary file using pickle.dump() method

• Once you try to open list.dat file in python editor to

 see the content python generates decoding error.

16

pickle.load() Method

• pickle.load() method is used to read the binary file.

• Once you try to open list.dat file in python editor to see the content python

17

HANDLING FILES THROUGH
OS MODULE

• The os module of Python allows you to perform Operating System dependent
operations such as making a folder, listing contents of a folder, know about a
process, end a process etc..

• Let's see some useful os module methods that can help you to handle files and
folders in your program.

 ABSOLUTE PATH

 RELATIVE PATH

Absolute path of file is file location, where
in it starts from the top most directory

Relative Path of file is file location, where
in it starts from the current working directory

18

HANDLING FILES THROUGH
OS MODULE

Method Function

os.makedirs() Create a new folder

os.listdir() List the contents of a folder

os.getcwd() Show current working directory

os.path.getsize() show file size in bytes of file passed in parameter

os.path.isfile() Is passed parameter a file

os.path.isdir() Is passed parameter a folder

os.chdir Change directory/folder

os.rename(current,new) Rename a file

os.remove(file_name) Delete a file

19

CSV files

What is CSV File?

• A comma-separated values (CSV) file is a delimited text file
that uses a comma to separate values.

• Each line of the file is a data record.

• Each record consists of one or more fields, separated by
commas.

• The use of the comma as a field separator is the source of
the name for this file format.

• CSV file is used to transfer data from one application to
another.

• CSV file stores data, both numbers and text in a plain text.

20

CSV File Reading and Writing

• CSV (Comma Separated Values) format is the most common
import and export format for spreadsheets and databases.

• The lack of a well-defined standard means that subtle
differences often exist in the data produced and consumed
by different applications.

• These differences can make it annoying to process CSV files
from multiple sources.

• CSV module implements classes to read and write tabular
data in CSV format.

21

CSV File Reading and Writing

• The CSV module’s reader and writer objects read and write
sequences.

 csv.reader(csvfile, dialect='excel', **fmtparams)

 csv.writer(csvfile, dialect='excel', **fmtparams)

• Programmers can also read and write data in dictionary
form using the DictReader and DictWriter classes.

>>> import csv

>>> with open('names.csv', newline='') as csvfile:

... reader = csv.DictReader(csvfile)

... for row in reader:

... print(row['first_name'], row['last_name'])

22

Thank you

Conclusion!

