@ python’
Programing

Prof. K, Adisesha

e Created in 1991 by Guido van Rossum
= Named for Monty Python

o Useful as a scripting language
= script: A small program meant for one-time use
= Targeted towards small to medium sized projects

e Used by:
= Google, Yahoo!, Youtube
= Many Linux distributions
= Games and apps (e.g. Eve Online)

o Interpreted
= You run the program straight from the source code.
= Python program =>Bytecode —>a platforms native language

= You can just copy over your code to another system and it will auto-
magically work! *with python platform

e Object-Oriented

= Simple and additionally supports procedural programming
o Extensible — easily import other code
e Embeddable —easily place your code in non-python programs

e Extensive libraries

= (j.e. reg. expressions, doc generation, CGI, ftp, web browsers, ZIP,
WAV, cryptography, etc...) (wxPython, Twisted, Python Imaging library)

2 Installing Python

Windows: Mac OS X:

e Download Python from e Python is already installed.
http://www.python.org e Open a terminal and run python

o Install Python. or run Idle from Finder.

e Run Idle from the Start Menu.
Linux:

e Chances are you already have

Python installed. To check, run
python from the terminal.

o If not, install from your
distribution's package system.

Note: For step by step installation
instructions, see the course web site.

Programming basics

code or source code: The sequence of instructions in a
program.

syntax: The set of legal structures and commands that can
be used in a particular programming language.

output: The messages printed to the user by a program.

console: The text box onto which output is printed.

= Some source code editors pop up the console as an external
window, and others contain their own console window.

[d The Python Interpreter

e interpreted

= In Python Code is written and then directly executed by an
interpreter

= Type commands into interpreter and see immediate results
e Allows you to type commands one-at-a-time and see results

e A great way to explore Python's syntax
= Repeat previous command: Alt+P

File Edit Shell Debug Options Window Help
| Pvthon 3.7.3 (v3.7.3:ef4ec6edl2, Mar 25 2019, 21:26:53) [MSC v.1916 32

bit (Intel)] on win32
Type "help”, "copyright", "credits" or "license ()" for more information

>>> print ("Hello")
|| Hello

>>> print ("woxrid"”)
world

>>> 3+2

5

>>>

Ln:9 Cok:4

Smallest individual unit in a program is known as token.

1.Keywords
2.1dentifiers
3.Literals

4.0perators

5.Punctuators / Delimiters

Keywords

e Reserve word of the compiler/interpreter which
can’t be used as identifier.

and EXEC not
as finally ar
assern for pass
break from print
class global raise
continue if retum
def import try
del in while
elif IS with
glse lambda yield
except

Identifiers

A Python identifier is a name used to identify a variable,
function, class, module or other object.

An identifier starts with a letter Ato Z ora to z or an

underscore (_) fol
underscores and ¢

owed by zero or more letters,
igits (0 to 9).

Python does not a

low special characters

Identifier must not be a keyword of Python.

Python is a case sensitive programming language.
Thus, Rolinumber and rollnumber are two different identifiers in

Python.

Some valid identifiers :Mybook, file123, z2td, date_2, _no
Some invalid identifier : 2rno,break,my.book,data-cs

a Literals

Literals in Python can be defined as number, text, or
other data that represent values to be stored in
variables.

Example of String Literals in Python

name = ‘Johni’, fname="johny”

Example of Integer Literals in Python(numeric literal)
age = 22

Example of Float Literals in Python(numeric literal)
height = 6.2

Example of Special Literals in Python

name = None

10

] Operators

e Operators can be defined as symbols that are used to
perform operations on operands.

o Types of Operators

1.

NOoO vk WD

Arithmetic Operators.
Relational Operators.
Assignment Operators.
Logical Operators.
Bitwise Operators
Membership Operators
Identity Operators

11

& Arithmetic Operators

e Arithmetic Operators are used to perform arithmetic
operations like addition, multiplication, division etc.

Cperators | Description Example

+ perform addition of two number a+h
perform subtraction of two number a-h

! perform division of two number a'b

* perform multiplication of two numbler a*h

% Modulus = retums remainder a%b

i E;c::ﬂl;)jn;zﬁr; = remove digits after the alib

> Exponent = perform raise to power a**b

[d Relational Operators

o Relational Operators are used to compare the values.

Operators | Description Example

== Equal to, retumn true if a equals to b a==

= Mot equal, reumtrue ifaisnotequalstob |al=b
Greater than, retum true if a is greater than

> b a=h

o= Greater than or equal to , retum true if a is S
greaterthan borais equalsto b -

< Less than, retum true if a is less than b a<h

. Less than or eqL_JaI to, etumtruefais o=
lessthanboraisequalstob

13

[@l Assignment Operators

o Used to assign values to the variables.

Operators | Description Example
= Assigns values from right side operands to left side operand a=b

+= Add 2 numbers and assigns the result to left operand. a+=h

= Divides 2 numbers and assigns the result to left operand. al=b

= Multiply 2 numbers and assigns the result to left operand. A*=h

= Subtracts 2 numbers and assigns the result to left operand. A-=

Y= modulus 2 numbers and assigns the result to left operand. a%=h

fI= Perform floor division on 2 numbers and assigns the result to left operand. | alf=b

= calculate power on operators and assigns the result to left operand. a™=b

"’ 14

2 Logical Operators

* Logical Operators are used to perform logical
operations on the given two variables or values.

Operators | Description Example
and retum true if both condition are true ¥ and y
or retumn true if efther or both condition are true | X ory
not reverse the condition not{a=h)
Example:
a=30
b=20
if(@a==30andb==20):
print(‘hello")
Output :-
hello

[d Membership Operators

e The membership operators in Python are used to
validate whether a value is found within a sequence
such as such as strings, lists, or tuples.

Operators | Description Example
in retumn true if value exists in the sequence, else false. ain list
not in return true if value does not exists in the sequence, else false. | a notin list

e Example:

a=22
list = [22,99,27,31]
Ansl= ain list Ans2= a not in list
print(Ansl) print(Ans2)
e Output :-
True False

9 16

[d Identity Operators

o Identity operators in Python compare the memory
locations of two objects.

Operators | Description Example
IS returns true if two vanables point the same object, else false aisb
IS not retumns true if two variables point the different object, else false ais not b
e Example:
a=34
b=34
if (a is b):
print('both a and b has same identity')
else:
print(‘a and b has different identity')
e Qutput :-

9 both a and b has same identity

17

3 Punctuators / Delimiters

o Used to implement the grammatical and structure of a
Syntax.
e Following are the python punctuators.

= lI= %=

e
&: |= Ae >5o= <<= Fk =

9 18

2 Python program

e A python program contain the following components

. Comments

. Function

. Expression

. Statement

. Block & indentation

OUOr A W N =

19

2 Python Comment

o Comments: which is readable for programmer but ignored
by python interpreter

a) Single line comment: Which begins with # sign.

e Syntax:
comment text (one line)
= Example
This is a comment

b) Multi line comment (doc-string): either write multiple line
beginning with # sign or use triple quoted multiple line. E.g.
= Example
Ythis is my
first
python multiline comment

\V/4

ExXpressions

o expression: A data value or set of operations to compute a

value.
Examples: 1 + 4 * 3
42

Arithmetic operators we will use:
+ - * / addition, subtraction/negation, multiplication, division
S modulus, a.k.a. remainder
* exponentiation
precedence: Order in which operations are computed.
= * / & *x have a higher precedence than + -

1 + 3 * 41is13

= Parentheses can be used to force a certain order of evaluation.

(1 + 3) * 41is16
21

Type conversion

e The process of converting the value of one data type
(integer, string, float, etc.) to another data type is called
type conversion.

e Python has two types of type conversion.

o Implicit Type Conversion: Python automatically converts one

data type to another data-type. This process doesn't need any user
involvement.

o Explicit Type Conversion: In Explicit Type Conversion, users

convert the data type of an object to required data type. We use the
predefined functions like int(), float(), str() etc.

9 22

Variables

e variable: A named piece of memory that can store a value.
» Usage:
e Compute an expression's result,

e store that result into a variable,
e and use that variable later in the program.

e assighment statement: Stores a value into a variable.
= Syntax:

name = value

= Examples: x = 5 gpa =|3.14
= A variable that has been given a value can be used in
expressions.
x + 4S9

[d The print Statement

e Python uses indentation to indicate blocks, instead of {}
= Makes the code simpler and more readable

= In Python, you must indent.
 print : Produces text output on the console.

e Syntax:
print ("Message")
print (Expression)

= Prints the given text message or expression value on the console, and moves the cursor
down to the next line.

print (Iteml1, Item2, ..., ItemN)
= Prints several messages and/or expressions on the same line.

e Examples:
print ("Hello, world!")
age = 45
print ("You have", 65 - age, "years until retirement")
Output:
Hello, world!
i’ You have 20 years until retirement ”

« input : Reads a number from user input.
= You can assign (store) the result of input into a variable.

= Example:
age = input("How old are you? ")
print "Your age 1is", age
print "You have", 65 - age, "years until
retirement"
Output:

How old are you? 53
Your age 1s 53
You have 12 years until retirement

25

