

DMPS Quiz Maestro 2020

by
Name ()
	Under Guidance	
of
Mr. Rahul Bhatia
Submitted to the School of Computer and Information Sciences
in partial fulfilment of the requirements
for the degree of

[bookmark: _GoBack]Certificate

Acknowledgement
I would like to give all credit of project completion to my Lord Shiv Shankar, who has been showering his blessing on me and helped.
I have named it RRobosys INSURANCE SMART AGENT in the honour of my late father. My mother has been greatest source of inspiration for me; she has motivated me at every step of my life. I want to express my gratitude toward my guide, Mr. Rahul Bhatia and my Study Centre Faculties Mr. Manoj & Mr. Saurabh Vasisth for their valuable guidance in selection and case study of the present problem. I want to thank Mr. Mayank Agarwal, System Analyst, Infosys for his technical assistance in this project.
I am thankful to my colleagues, who helped me in one or other way. Some of them are S.K. Siddhu and Deepak Bhatt, LIC Agent, Meerut. I want to thank each and every friend who helped me and please pardon me for not mentioning all those worthy names.

Thanking You,
Name

CONTENT

	S.N.
	Synopsis Component
	Page

	1
	TITLE OF THE PROJECT
	5

	
	
	

	2
	INTRODUCTION & OBJECTIVES OF THE PROJECT
	6

	
	
	

	3
	PROJECT CATEGORY
	8

	
	
	

	4
	TOOLS/PLATFORM, HARDWARE AND SOFTWARE REQUIREMENTS
	9

	4.1
	Development Tools and Platform
	9

	4.2
	Hardware Requirements
	9

	4.3
	Software Requirements
	9

	
	
	

	6
	COMPLETE STRUCTURE OF THE PROJECT
	22

	6.1
	Modules and their description
	22

	6.2
	Data Structure
	23

	6.3
	Process Logic of modules
	29

	6.4
	Testing Process
	31

	6.5
	Reports Generation.
	31

	
	
	

	7
	LIMITATION OF THE PROJECT
	33

	
	
	

	8
	FUTURE SCOPE AND FURTHER ENHANCEMENT OF THE PROJECT
	34

	
	
	

	9
	BIBLIOGRAPHY
	35

1. Title of the Project

2. Introduction and Objective of the Project

RROBOSYS Insurance Smart Agent (ISA) is customized software designed to meet the requirement of the Insurance Agencies and Agents. The existing system of policy management followed by several agencies or agents is quite cumbersome. They use flat file system such as spreadsheet programs or manual paper work to store their information. The existing system is not appropriate for quick retrieval of data and reliable for constituency for updating data as per the demand of the policy holders. It too carries the risk of data redundancy.
Insurance Smart Agent focuses on the bottleneck of the existing system. It has a simple and easy user friendly interface designed for people with minimum computer knowledge. It primary acts as a good information center where agents can store the information related to the policy holders, premium payment, detail of the policies. New policies launched by Insurance Companies can be added and older can be modified. It will provide the rating of the policies of Insurance Companies to help the customer to decide the best for them. Premium will be increased, if policy holder is interested in more benefits like accidental riders, etc. It will generate the due premium in a particular period. Agents can give attractive schemes for policy holders whose policy is lapsed with the help of lapsed policy report. It will generate the premium payment receipt on deposit of premium to the agent/agency.
Further, agency can monitor the productivity of each agent at regular interval to give incentives for more efficient and productive agents. It will automate the calculation of commission of the agents. A policy holder can surrender his policy. In case of death of policy holder, the policy will terminate and sum assured will be given to the nominee or the legal heir.

Project Objective
There are several main objectives for this project:
• To replace the manual system followed by the agents and be more eco-friendly by reducing paper wastage.
• To provide up-to-date information about policies of the policy holder.
• To provide up-to-date information of the policy holder.
• To provide facility of switching between the existing policies.
• To surrender any policy or to revive any lapsed policy.
• To handle query related to the maturity and tax benefit.
• To give a well-organized platform for managing all its agents and policy holders.
• To generate commission of the agents.
• To generate various report of due premium, lapsed policies, etc.
• To provide prior information to the policy holders to avoid late fee in delayed premium payment.
• To show reminders of payment of premium or maturity.

3. Project Category

ISA- INSURANCE SMART AGENTis a Information System for managing the work of an Insurance Agencies / Agents, which is to be developed using Net Beans, an IDE based on Java and MySQL as Backend.INSURANCE SMART AGENT emphasis on storing information, quick retrieval and updating information.User Interface has been designed with the help of Net Beans, which is very user friendly and supports RAD. Java is selected as the language for development due to its object oriented and open source nature, which makes it the most popular language in present development scenario. Like Net Beans, MySQL also attracts lots of developer because of its simple, friendly and open source nature. Both MySQL and Net Beans can be downloaded free of cost from their respective websites.

4. Tools/Platform, Hardware and Software Specification Requirements
4.1 Development Tools and Platform
To develop ISA, the following tools/platform is proposed to be used:
• Windows 7
• Net Beans 7.1
• MySQL 5.1.33

4.2 Hardware Requirements
ISA is proposed to be installed on a having the following minimum hardware requirements:
• Intel® Pentium 4 Processor having clock speed 1 GHz.
• 512 MB DDR-1 RAM.
• Hard Disk Drives having capacity of 40 GB.
• At least 2 GB free space for the installation of MySQLand JRE 6.0 / JDK 1.6.
• DVD Writer and Pen Drives for backup purposes.
• Optional: Printer – Inkjet or Laserjet.

4.3 Software Requirements
ISA will require atleast the following software platform:
•Windows XPHome EditionSP 2
• MySQL Database Management System
• JRE 6.0 / JDK 1.6

1. Complete Structure of the Project
6.1 Modules and their description
ISA comprises of five modules. Brief description of each and every module is given below:

(i) Administrator Module: This module will be responsible for administration of the system. Insurance Companies will be registered by the admin. Insurance plan and scheme will be added using this module and provide facility to modify them later. It will create new agent and give username and password to the agents to access the ISA and use the services of ISA. In case of password forgotten, admin can change the agent’s password. Admin can also supervise the work of the agents. Using this module, monthly commission and deduction will be calculated and generate their monthly payment.

(ii) Customer/Policy Holder Management Module: This module will be responsible for maintaining the customers or policy holders. Agents after logging in to the system can add new Customer Head, i.e. the head of a family or the bread earner. Some Insurance schemes are for securing future of the child; they are children but the life assured is provided to customer head. After adding the Customer Head, detail of the customer / proposed person for insurance will be added. It also provides the feature modification of any these detail at later stage. This module will also mark the death of Life assured person in his death status. Guaranteed sum Assured will be given to his after confirmation from the insurer.

(iii)Policy Management Module: This module will be responsible for managing and supervising the policies. It will help agents to present the existing plans before the customers and give comparative benefits of similar type of scheme. It will update the policy proposal status. In case of bouncing of cheque, amount will be deduction for Agent’s payment. It will store the information related to policy in case of approval of Policy proposal from both sides i.e. Insurer and Insured. It will be used to surrender any policy and calculated the amount payable to policy holder. This module is also used to revive any lapsed policy.

(iv) Premium Management Module: This module will handle the premium deposited by policy holder. It will show the due premium of any policy holder and during any period. It will store the detail of all premium deposited. It also gives the feature of advance premium deposit. It will generate the outstanding premium, which are yet to be deposited to the Insurer. It will automate the calculation of commission. It will be used to print premium certificate and statement. It also generates list of cheques bounced.

(v) Agent Management Module: This module will be responsible for processing activities related to agents. It can be used to process any kind query related to commission and deduction of the agents. Further, it can be used to print the monthly payment of the agents. Agents can edit their contact information.

6.2 Data Structures
The ISA database consists of 14 tables. Each and every table is setup with the proper Integrity constraints to work properly. The structure of the database tables is given below:
[image:]
[image:]

(i) Admin: Stores the details of Administrator.
	Field Name
	Field Type
	Constraints
	Description

	user
	varchar(10)
	Not null
	Stores the username of the admin.

	name
	varchar(50)
	
	stores the name of the admin

	Branch
	varchar(10)
	Not null
	stores the branch of the admin.

	Password
	varchar(10)
	
	stores the password.

	Agency Name
	varchar(100)
	
	stores the name of the agency.

(ii) Insurer: Stores the details of the different insurance companies enrolled.
	Field Name
	Field Type
	Constraints
	Description

	in_id
	varchar(10)
	Primary key
	Stores the unique insurer id.

	name
	varchar(100)
	
	Stores the name of the insurer

	type
	varchar(20)
	
	 Stores the type of the insurance

	city
	varchar(15)
	
	Stores the city of the insurer

	phone
	varchar(10)
	
	Stores the phone numbers of the insurer

	email
	varchar(25)
	
	Stores the email id of the insurer

	website
	varchar(25)
	
	Stores the website of the insurer

 (iii) Plan: Stores the insurance plan information of the insurer.
	Field Name
	Field Type
	Constraints
	Description

	pl_id
	varchar(10)
	Primary key
	Stores the unique plan id

	in_id
	varchar(10)
	Foreign key
	Stores the insurer id of particular plan

	name
	varchar(100)
	Unique
	Store the fullname of plan

	Table_no
	int
	Unique
	Stores the table no. of the plan

	min_SA
	longint
	Not null
	Stores the minimum Sum Assurance the plan

	Min_term
	int
	Not null
	Stores the minimum term of the plan

	Min_age
	int
	Not null
	Stores the minimum age of policy holder

	Tax_benefit
	varchar(10)
	
	Stores the tax benefit of the plan

	Premium_1l
	int
	Not null
	Stores the plan’s premium of 1 lakh of 35 year old for 10 years.

	maturity_1l
	longint
	Not null
	Stores the plan’s maturity of 1 lakh of 35 year old for 10 years.

	comm
	int
	Not null
	Stores the commission % of the agent

	Ext_term
	int
	
	Stores the extended term of the plan

	Surr_factor
	int
	Not null
	Stores the surrender factor of the plan

	benefit
	blob
	
	Stores the benefits of the plan

Iv) Agent: Stores the details of the agents of the insurance company.
	Field Name
	Field Type
	Constraints
	Description

	ag_id
	varchar(10)
	Primary key
	Stores the unique agent code

	in_id
	varchar(10)
	Foreign key
	Uses the insurer id for the agent.

	Branch_id
	Varchar(10)
	Not null
	Stores the branch agent code

	Fullname
	varchar(50)
	
	Stores fullname of the agent

	Address
	varchar(100)
	
	Stores address of the agent

	City
	varchar(50)
	
	Stores city of the agent

	Phone
	varchar(10)
	
	Stores phone number of the agent

	Email
	varchar(10)
	
	Stores email of the agent

	Dob
	varchar(10)
	
	Stores the date of birth of agent

	Acc_no
	varchar(10)
	
	Stores the account no

	Bank
	varchar(10)
	
	Stores the bank name

	
v) Customer Head: Stores the details of the customer head.
	Field Name
	Field Type
	Constraints
	Description

	h_id
	varchar(10)
	Primary key
	Stores the unique customer head code

	Fullname
	varchar(10)
	Not null
	Stores fullname of the customer head

	F_name
	varchar(10)
	Not null
	Stores fullname of the customer head

	Dob
	varchar(10)
	Not null
	Stores the date of birth of customer head

	Address
	varchar(100)
	Not null
	Stores address of the customer head

	City
	varchar(30)
	Not null
	Stores city of the customer head

	Phone
	varchar(10)
	Not null
	Stores phone number of the customer head

	Email
	varchar(50)
	Not null
	Stores email of the customer head

	Dob
	date
	Not null
	Stores the date of birth of customer head

	An_Income
	longint
	Not null
	Stores the annual income of customer head

	Acc_no
	varchar(16)
	
	Stores the account no

	Bank
	varchar(50)
	
	Stores the bank name

	death
	boolean
	Not null Default 0
	Store death status of customer head.

	

Source Code with ScreenShots:
[image:]
'''Welcome to MCQ Master: Lib'''
import mysql.connector as msql
import getpass
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import time

#attributes
dhost="localhost"
duser="root"
dpass=""
dbase="quiz"
guest='guest'
utype='guest'
dcon=None

#methods
#display headers
def whead():
 print("-=-"*30)
 print(" "*5,"Welcome to..")
 print(" "*20,"DMPS Quiz Mastro 2020")
 print("---"*30)

def wfoot():
 print("---"*30)
 print(" "*60,"Designed by:- Shubham XII B")
 print("-=-"*30)

def wtitle(title):
 os.system('cls')
 print("---"*30)
 print("DMPS Quiz Mastro: ",title,"-",utype.upper(),"(",guest,")")
 print("---"*30)

def connect():
 global dcon
 try:
 dcon=msql.connect(host=dhost,user=duser,passwd=dpass,database=dbase)
 except msql.Error as err:
 print("Connectivity Error: {}".format(err))
 return dcon

def login():
 os.system('cls')
 whead()
 print("Login Screen")
 print("---"*30)
 global utype, guest
 utype=input("Enter User type: (Guest,Admin,User) ")
 if utype in ('user','admin'):
 try:
 user=input("Username: ")
 pwd=getpass.getpass()
 dcon=connect()
 cur=dcon.cursor()
 cur.execute("Select * from login where uname='{}' and pass='{}' and utype='{}';".format(user,pwd,utype))
 row = cur.fetchall()
 match=True
 for r in row:
 print("Login successful")
 guest=r[0]
 utype=r[2]
 match=False
 if match:
 print("Username Password Mismatches")
 q=input("Press 'q' to quit")
 if q.lower()=='q':
 quit()
 else:
 guest='guest'
 utype='guest'
 print("---"*30)
 print("You are logged in as Guest")
 input()
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except Exception as err2:
 print("Security Error: {}".format(err2))
 else:
 utype='guest'
 guest=input("Enter your name: ")

def logout():
 wfoot()
 print("Logging out...")
 time.sleep(2)
 dcon.close()
 quit()

def menus():
 while True:
 wtitle(" Menus : ")
 ch=input('''1. Take a test
 \n2. Check Toppers list
 \n3. Check your report (only for users)
 \n4. Update your profile(only for users)
 \nPress any other key to logout
 \nEnter the choice: ''')
 global guest
 if ch=='1':
 wtitle(" Quiz Time")
 runquiz()
 elif ch=='2':
 wtitle(" Toppers' list")
 try:
 dcon=connect()
 cur=dcon.cursor()
 print("Merit List:")
 cur.execute("select uname, count(test),sum(score),sum(score)/sum(total)*100 from report group by uname order by sum(score)")
 row = cur.fetchmany(10)
 udf=pd.DataFrame([],columns=['Username','Tests','Score','percentage'])
 sr=1
 for r in row:
 udf.loc[sr]=r
 sr+=1
 print(udf.sort_values('percentage'))
 print("Mean score", udf.Score.mean())
 plt.bar(udf.Username, udf.percentage,color='g',width=0.33)
 plt.title("Toppers comparision chart")
 plt.xlabel("Username")
 plt.ylabel("Performance")
 plt.show()
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 print("---"*30)
 input("\nPress any key to continue")
 elif ch=='3':
 wtitle(" Report Card")
 if utype=='user':
 try:
 dcon=connect()
 cur=dcon.cursor()
 print("Check your performance:")
 cur.execute("select test,score, score/total*100,tdate from report where uname='{}'".format(guest))
 row = cur.fetchall()
 udf=pd.DataFrame([],columns=['test','score','percentage','TestDate'])
 sr=1
 for r in row:
 udf.loc[sr]=r
 sr+=1
 print(udf.sort_values('TestDate'))
 plt.plot(udf.test, udf.percentage,'g')
 plt.plot(udf.test, udf.score,'b')
 plt.title("Performance chart")
 plt.xlabel("Test")
 plt.ylabel("Performance")
 plt.show()
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 else:
 print('\nUnauthorised Access')
 print("---"*30)
 input("\nPress any key to continue")
 elif ch=='4':
 wtitle(" Profile Page")
 if utype=='user':
 try:
 dcon=connect()
 cur=dcon.cursor()
 cur.execute("select * from login where uname='{}'".format(guest))
 row = cur.fetchall()
 udf=pd.DataFrame([],columns=['username','password','type','Student Name','Class'])
 sr=1
 for r in row:
 udf.loc[sr]=r
 sr+=1
 print("User Profile:\n",udf)
 ch=input("Do you want to update your profile(y/n)")
 if ch.lower()=='y':

 print("Update your details")
 n=input("Name: ")
 c=input("Class: ")
 cur.execute("update login set name='{}', class='{}' where uname='{}'".format(n,c,guest))
 row = cur.fetchone()
 dcon.commit()
 print("Profile updated successfully")
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 else:
 print('Unauthorised Access')
 print("---"*30)
 input("Press any key to continue")
 else:
 logout()

def admin_menus():
 while True:
 wtitle(" Menus : ")
 ch=input("1. Append Question Bank \
\n2. Update Question Bank \
\n3. Users' List \
\n4. Test a quiz\
\nPress any other key to logout\
\nEnter the choice: ")
 if ch=='1':
 wtitle(" Append Question Bank")
 addQBank()
 elif ch=='2':
 wtitle(" Update Question Bank")
 upQBank()
 elif ch=='3':
 wtitle(" Users' List")
 ulist()
 elif ch=='4':
 wtitle(" Review Quiz format")
 runquiz()
 else:
 logout()

def addQBank():
 while True:
 wtitle(" Append Question Bank : ")
 ch=input("1. Add Questions \
\n2. View Question Bank \
\nPress any other key to move to main menu\
\nEnter the choice: ")
 if ch=='1':
 wtitle(" Add Questions")
 try:
 dcon=connect()
 cur=dcon.cursor()
 cur.execute("Select max(qno) from qbank;")
 row = cur.fetchone()
 for r in row:
 r+=1
 print("Details of question in MCQ format")
 qu=input("Question: ")
 a=input("Option1: ")
 b=input("Option2: ")
 c=input("Option3: ")
 d=input("Option4: ")
 an=int(input("Correct option(1,2,3,4): "))
 ans="NA"
 if an==1:
 ans=a
 elif an==2:
 ans=b
 elif an==3:
 ans=c
 elif an==4:
 ans=d
 cur.execute("insert into qbank values({},'{}','{}','{}','{}','{}','{}');".format(r,qu,a,b,c,d,ans))
 rec=cur.rowcount
 dcon.commit()
 print(rec," record inserted successfully")
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 elif ch=='2':
 wtitle(" View Question Bank")
 viewQ()
 else:
 admin_menus()

def upQBank():
 while True:
 wtitle(" Update Question Bank : ")
 viewQ()
 ch=input("1. Modify Questions \
\n2. Delete Questions \
\nPress any other key to move to main menu\
\nEnter the choice: ")
 if ch=='1':
 wtitle(" Modify Questions")
 try:
 dcon=connect()
 cur=dcon.cursor()
 qno=int(input("Enter question no to be modified: "))
 print("Details of question in MCQ format")
 qu=input("Question: ")
 a=input("Option1: ")
 b=input("Option2: ")
 c=input("Option3: ")
 d=input("Option4: ")
 an=int(input("Correct option(1,2,3,4): "))
 ans="NA"
 if an==1:
 ans=a
 elif an==2:
 ans=b
 elif an==3:
 ans=c
 elif an==4:
 ans=d
 cur.execute("update qbank set ques='{}', op1='{}',op2='{}',op3='{}',op4='{}',ans='{}' where qno={}".format(qu,a,b,c,d,ans,qno))
 row = cur.fetchone()
 dcon.commit()
 print(cur.rowcount," record updated successfully")
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 elif ch=='2':
 wtitle(" Delete Questions")
 try:
 dcon=connect()
 cur=dcon.cursor()
 qno=int(input("Enter question no to be deleted: "))
 cur.execute("delete from qbank where qno={}".format(qno))
 row = cur.fetchone()
 dcon.commit()
 print(cur.rowcount," record deleted successfully")
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 else:
 admin_menus()

def ulist():
 wtitle(" User Profile : ")
 try:
 dcon=connect()
 cur=dcon.cursor()
 cur.execute("Select * from login;")
 row = cur.fetchall()
 udf=pd.DataFrame([],columns=['username','password','type','Student Name','Class'])
 sr=1
 for r in row:
 udf.loc[sr]=r
 sr+=1
 print("User Profile:\n",udf.sort_values('type'))
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 print("---"*30)
 try:
 ch=input("Do you want to add more users(y/n)")
 if ch.lower()=='y':
 print("User details")

 un=input("UserName: ")
 ps=getpass.getpass()
 n=input("Name: ")
 c=input("Class: ")
 cur.execute("insert into login values('{}','{}','user','{}','{}')".format(un,ps,n,c))
 row = cur.fetchone()
 dcon.commit()
 print("User added successfully")
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 input("Press any key to continue")
 admin_menus()

def viewQ():
 try:
 dcon=connect()
 cur=dcon.cursor()
 cur.execute("Select * from qbank;")
 row = cur.fetchall()
 udf=pd.DataFrame([],columns=['question','option1','option2','option3','option4','ans'])
 for r in row:
 udf.loc[r[0]]=r[1:]
 print("Question Bank:\n",udf)
 print("---"*30)
 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 input("Press any key to continue")

def runquiz():
 wtitle("Quiz Time")
 print('''Instructions:\n1. There are a total of 5 questions of 3 marks each
\n2. Negative marking of -1 marks for wrong answers''')
 print("Press any key to start...")
 global guest
 qn=1
 score=0
 rq=0
 wq=0
 try:
 dcon=connect()
 cur=dcon.cursor()
 cur.execute("Select * from qbank;")
 row = cur.fetchall()
 for r in row:
 os.system('cls')
 print("-=-"*30)
 print(" "*5,"DMPS Quiz Mastro 2020:-",guest.upper())
 print("---"*30)
 print("Question no.",qn," of 10")
 print("---"*30)
 print("Question:\t",r[1])
 print("Option1:\t",r[2])
 print("Option1:\t",r[3])
 print("Option1:\t",r[4])
 print("Option1:\t",r[5])
 an=int(input("Correct option(1,2,3,4): "))
 ans="NA"
 if an==1:
 ans=r[2]
 elif an==2:
 ans=r[3]
 elif an==3:
 ans=r[4]
 elif an==4:
 ans=r[5]
 if ans==r[6]:
 score+=3
 rq+=1
 elif ans!="NA":
 wq+=1
 score-=1
 qn+=1
 i=input("Press 'q' to cancel or any other key to continue")
 if i.lower()=='q':
 break
 print("Test Summary: \nQuestion Attempted: ",qn)
 print("\nCorrect: ",rq,"\t Incorrect: ",wq,"\nScore: ",score,"\n%age: ",score/15*100)
 if utype in ('admin','user'):
 cur.execute("Select max(test) from report;")
 r1=cur.fetchone()
 for t in r1:
 t+=1
 cur.execute("insert into report values({},'{}',{},15,now())".format(t,guest,score))
 print(cur.rowcount," record inserted")
 dcon.commit()
 print("---"*30)

 except msql.Error as err1:
 print("Connectivity Error: {}".format(err1))
 except:
 print("Please enter valid data")
 input("Press any key to continue")

#starts here
login()
if utype.lower()=='admin':
 admin_menus()
else:
 menus()
wfoot()

5. Limitation of the Project
There is always a limitation of time and resources for any development. It is termed as software crisis. I have tried my best in developing this solution for above problem. But still aspect are noteworthy, which I will try to resolve by gaining more knowledge.
1. I could not automate the calculation of premium of a policy. As LCI, one of the major insurer have given premium in the form tabular information based on age, term and sum assured. There was no such formula to calculate premium. Premium have to be entered manually after calculation from tabular data.
2. There could be some inconsistency based on premium deposition, if customer pays premium himself at some other counter or does not give any information to the agent. To resolve it, we should get to Insurer data of premium deposit.

3. Future Scope and Further Enhancement of the Project

Following modules can be added to enhance the features of the ISA.

• Intranet Technology could be extended to Internet without any modification to support multi branch facility.
• Payment module – This module can be added to ISA for maintaining the payment from the plans and payment to the agents.
• SMS Module - This module will be added to the ISA for giving reminder using SMS to policy holder regarding premium payment or any urgent issue.

image1.png

image2.png

image3.png

