1. ABSTRACT
It's sometimes hard to know which of the many items in your to-do list you should do now. This could be because you have other events coming up you need to attend, and there isn't time to do the most important things. Instead, you might find yourself wasting time or doing an unimportant smaller task, when there is something more important you could have completed if you knew about it.

Certain tasks require more concentration and effort than others. If at any given time you do not feel up to completing a task that requires significant focus, you should do the most important thing that requires the least effort. This type of prioritizing isn't often managed by todo lists and that's one of the major changes we hoped to have in ours.

My goal was to create an Python program that blends todo lists in a more useful manner. Per early ideation sessions focused on user requirements, we identified a set of features that would add the most value to the program.

2. INTRODUCTION

2.1. PYTHON
Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects.
	Python is dynamically typed and garbage-collected. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming. Python is often described as a "batteries included" language due to its comprehensive standard library.
	Python was conceived in the late 1980s as a successor to the ABC language. Python 2.0, released in 2000, introduced features like list comprehensions and a garbage collection system capable of collecting reference cycles. Python 3.0, released in 2008, was a major revision of the language that is not completely backward-compatible, and much Python 2 code does not run unmodified on Python 3.

Python Features
Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax. This allows the student to pick up the language quickly.
Easy-to-read − Python code is more clearly defined and visible to the eyes.
Easy-to-maintain − Python's source code is fairly easy-to-maintain.
A broad standard library − Python's bulk of the library is very portable and cross-platform compatible on UNIX, Windows, and Macintosh.
Interactive Mode − Python has support for an interactive mode which allows interactive testing and debugging of snippets of code.
Portable − Python can run on a wide variety of hardware platforms and has the same interface on all platforms.
Extendable − you can add low-level modules to the Python interpreter. These modules enable programmers to add to or customize their tools to be more efficient.
Databases − Python provides interfaces to all major commercial databases.
GUI Programming − Python supports GUI applications that can be created and ported to many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and the X Window system of Unix.
Scalable − Python provides a better structure and support for large programs than shell scripting.
Python graphical user interfaces (GUIs)
Tkinter − Tkinter is the Python interface to the Tk GUI toolkit shipped with Python. We would look this option in this chapter.
wxPython − This is an open-source Python interface for wxWindows
JPython − JPython is a Python port for Java which gives Python scripts seamless access to Java class libraries on the local machine
2.2. Overview of Python modules
Some Predefined Modules of Python:
	Math
	These include trigonometric functions, representation functions, logarithmic functions, angle conversion functions, etc. In addition, two mathematical constants are also defined in this module.

	Numpy
	Numpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays.

	Mysql
	Python needs a MySQL driver to access the MySQL database.

	matplotlib
	Matplotlib is a visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.

	csv
	Python provides a CSV module to handle CSV files. To read/write data, you need to loop through rows of the CSV.

	datetime
	The datetime module supplies classes for manipulating dates and times in both simple and complex ways.

	random
	Functions in the random module depend on a pseudo-random number generator function random(), which generates a random float number between 0.0 and 1.0.

2.3 MYSQL

 MySQL is currently the most popular open source database software. It is a multi-user, multithreaded database management system. MySQL is especially popular on the web. It is one of the parts of the very popular LAMP platform. Linux, Apache, MySQL and PHP or WIMP platform Windows, Apache, MySQL and PHP. MySQL AB was founded by Michael Widenius (Monty), David Axmark and Allan Larsson in Sweden in year 1995.
MySQL is a relational database management system based on SQL – Structured Query Language. The most common use for MySQL however, is for the purpose of a web database. MYSQL has been used in this project to store the details of the vehicles in form of a table.

Features of MySQL:

· Open Source & Free of Cost: It is Open Source and available at free of cost.

· Portability: Small enough in size to install and run it on any types of Hardware and OS like Linux, MS Windows or Mac etc.

· Security: Its Databases are secured & protected with password.

· Connectivity: Various APIs are developed to connect it with many programming languages.

· Query Language: It supports SQL (Structured Query Language) for handling database.
PYTHON WITH MYSQL CONNECTOR

MySQL connector is a library that provides connectivity functionality to connect to a database from within python. MySQL Connector/Python enables Python programs to access MySQL databases.

It has been used in this program to perform operations like insert, delete, and update and search the details of the vehicles that had been parked or to be parked.

3. SYSTEM REQUIREMENTS

 HARDWARE REQUIREMENTS

PROCESSOR : INTEL(R) PENTIUM(R)
RAM 	 : 4.00 GB
HARD DISK	 : 256 GB

SOFTWARE REQUIREMENTS

OS: WINDOWS 10 64 BIT
PYTHON: 3.10.1
NOTEPAD: WINDOWS

4. OBJECTIVE OF THE PROJECT
The objective this project is to allow the different kinds of persons to maintaina clean and structured detail of their to do list software. This project is to make users to have easy access in remembering their tasks,it adds many benefit slike reminding your tasks,
Futher you can also arrange it to own perferences and make ease to yourself. You can ask it to give a random tasks.This reduces your workload and customize your schedule optimally.
Write programs utilizing modern software tools.

1. Apply simple principles effectively when developing small to medium sized projects.
2. Write effective procedural code to store small to medium sized informations.
3. Students will demonstrate a breadth of knowledge in computer science, as exemplified in the areas of systems theory and software devolepment.
4. Students will demonstrate ability to conduct a research or applied computer science project, requiring and presentation skills which exemplify scholarly style in computer science.

5. MODULES PURPOSES AND CODING
Modules Used:
Tkinter
Random
Messagebox
Modules Purposes:

TKINTER: This framework provides Python users with a simple way to create GUI elements using the widgets found in the Tk toolkit. Tk widgets can be used to construct buttons, menus, data fields, etc. in a Python application.

RANDOM: Python Random module is an in-built module of Python which is used to generate random numbers. This module can be used to perform random actions such as generating random numbers, print random tasks.

MESSSAGE BOX: MessageBox Widget is used to display the message boxes in the python applications. This module is used to display a message using provides a number of functions.

SOURCE CODE:

import tkinter
import random
from tkinter import messagebox

def update_tasks():
 clear_listbox()
 for task in tasks:
 lb_tasks.insert("end", task)
 numtask = len(tasks)
 label_dsp_count['text'] = numtask

def clear_listbox():
 lb_tasks.delete(0, "end")

def add_task():
 label_dsply["text"] = ""
 Ntask = text_input.get()
 if Ntask != "":
 tasks.append(Ntask)
 update_tasks()
 else:
 label_dsply["text"] = "please enter the text"
 text_input.delete(0, 'end')

def delete_all():
 conf = messagebox.askquestion(
 'delet all??', 'are you sure to delete all task?')
 print(conf)
 if conf.upper() == "YES":
 global tasks
 tasks = []
 update_tasks()
 else:
 pass

def delete_one():
 de = lb_tasks.get("active")
 if de in tasks:
 tasks.remove(de)
 update_tasks()

def sort_asc():
 tasks.sort()
 update_tasks()

def sort_dsc():
 tasks.sort(reverse=True)
 update_tasks()

def random_task():
 randtask = random.choice(tasks)
 label_dsply["text"] = randtask

def number_task():
 numtask = len(tasks)
 label_dsply["text"] = numtask

def save_act():
 savecon = messagebox.askquestion(
 'Save Confirmation', 'save your progress?')
 if savecon.upper() == "YES":
 with open("E:\SaveFile.txt", "w") as filehandle:
 for listitem in tasks:
 filehandle.write('%s\n' % listitem)
 else:
 pass

def load_info():
 messagebox.showinfo(
 "info", "created by NI" ,)

def load_act():
 loadcon = messagebox.askquestion(
 'Save Confirmation', 'save your progress?')
 if loadcon.upper() == "YES":
 tasks.clear()

 with open('SaveFile.txt', 'r') as filereader:
 for line in filereader:
 currentask = line
 tasks.append(currentask)
 update_tasks()

 else:
 pass

def exit_app():
 confex = messagebox.askquestion(
 'Quit Confirmation', 'are you sue you want to quit?')
 if confex.upper() == "YES":
 root.destroy()
 else:
 pass

root = tkinter.Tk()
change root background col and ect
root.configure(bg="cyan")
root.title("TASK LIST")
root.geometry("450x450")
database
tasks = []
tasks = ['tes 1', 'best2', 'dest3']

GUI (graphical user interface)
main root app

label_title = tkinter.Label(root, text="Todo List", bg="red",fg="blue")
label_title.grid(row=0, column=0)

label_dsply = tkinter.Label(root, text="Tasks", bg="red",fg="blue")
label_dsply.grid(row=0, column=1)

label_dsp_count = tkinter.Label(root, text="", bg="white")
label_dsp_count.grid(row=0, column=3)

text_input = tkinter.Entry(root,)
text_input.grid(row=1, column=1,ipadx=20,ipady=40)

button section
text_add_bttn = tkinter.Button(
 root, text="add todo", bg="white", fg="green", width=20,height=2, command=add_task)
text_add_bttn.grid(row=1, column=0)

delone_bttn = tkinter.Button(
 root, text="Done Task", bg="white",fg="green", width=20,height=2, command=delete_one)
delone_bttn.grid(row=2, column=0)

delall_bttn = tkinter.Button(
 root, text="Delete all", bg="white",fg="green", width=20,height=2, command=delete_all)
delall_bttn.grid(row=3, column=0)

sort_asc = tkinter.Button(root, text="sort (ASC)",bg="white",fg="green", width=20,height=2, command=sort_asc)
sort_asc.grid(row=4, column=0)

sort_dsc = tkinter.Button(root, text="sort (DSC)",
 bg="White",fg="green", width=20,height=2, command=sort_dsc)
sort_dsc.grid(row=5, column=0)

random_bttn = tkinter.Button(
 root, text="random task", bg="White",fg="green", width=20,height=2, command=random_task)
random_bttn.grid(row=6, column=0)

number_task = tkinter.Button(
 root, text="Number of Task", bg="white",fg="green", width=20,height=2, command=number_task)
number_task.grid(row=7, column=0)

exit_bttn = tkinter.Button(root, text="exit app",
 bg="white",fg="green" ,width=20,height=2, command=exit_app)
exit_bttn.grid(row=8, column=0)

save_button = tkinter.Button(
 root, text="save TodoList", bg="white",fg="green" ,width=20,height=2, command=save_act)
save_button.grid(row=10, column=1)

load_button = tkinter.Button(
 root, text="Load LastTodolist", bg="white",fg="green", width=20,height=2, command=load_act)
load_button.grid(row=10, column=0)

info_button = tkinter.Button(
 root, text="info", bg="white",fg="green", width=20,height=2, command=load_info)
info_button.grid(row=11, column=0, columnspan=2)

lb_tasks = tkinter.Listbox(root)
lb_tasks.grid(row=2, column=1, rowspan=7)

main loop

6. RESULTS AND DISCUSSIONS
[image:]

[image:]

[image:][image:][image:]

7. CONCLUSION AND FUTURE ENHANCEMENT
It has been a matter of immense pleasure, honour and challenge to have this opportunity to take up this project and complete it successfully. While developing this project I have learnt a lot about online shopping system, I have also how to make it user friendly (easy to use and handle) by hiding the complicated parts of it from the users. During the development process I studied carefully and understood the criteria for making software more demanding, I also realized the importance of maintaining a minimal margin for error.

[bookmark: page30]
8. BIBLIOGRAPHY
www.github.com
www.python.org
www.python4csip.com
[bookmark: _GoBack]www.codingshiksha.com
www.stackoverflow.com
www.geeksforgeeks.com

16

image2.png

image3.png

image4.png

image5.png

image6.png

