KENDRIYA VIDYALAYA SANGATHAN : KOLKATA REGION

FIRST PREBOARD E

INFORMATICS PRACTICES NEW (065) - CLASS XII

Max Marks: 70

Time: 3

hrs

General Instructions:

- All questions are compulsory
- Question Paper is divided into 4 sections A,B,C and D.
- Section A comprises of questions(1 and 2)
 - i. Question 1 comprises Data Handling-2(DH-2)(Series, Numpy)
 - ii. Question 2 comprises of question from Data Handling -2(DH-2)(Data Frames and its operations)
- Section B comprises of questions from Basic Software Engineering.
- Section C comprises of questions from Data Management-2(DM-2)
- Section D comprises of questions from Society, Law and Ethics-2(SLE-2)

	SECTION- A				
1.					
(a)	Find the output of following program.	1			
	import numpy as np				
	d=np.array([10,20,30,40,50,60,70])				
	print(d[-5:])				
(b)	State at least two differences between a numpy array and a list.	1			
(c)	Fill in the blank with appropriate statement using numpy method to calculate the covariance	2			
	and correlation coefficient of the two given 1D arrays(A,B)				
	import numpy as np				
	A=np.array([1,2,3,4,5])				
	B=np.array([3,4,0,-1,-4])				
	result_covar= # COVARIANCE				
	result_coeff= #CORRELATION COEFFICIENT				
(d)	What will be the output of the following python code:	2			
	import pandas as pd				
	import numpy as np				
	d = {'Student':['Ali','Ali','Tom','Tom'],\				
	'House':['Red',Red,'Blue',Blue'],\				
	'Points':[50,70,60,80]}				

	df =pd.DataFrame(d)	
	df1 = df.pivot_table(index='Student',columns='House',values='Points',aggfunc=np.sum)	
	print(df1)	
(e)	Given following ndarray A:	2
	([[2, 4, 6],	
	[7, 8, 9],	
	[1, 2, 3]])	
	Write the python statements to perform the array slices in the way so as to extract	
	(i) First row (ii) Second Column	
(f)	Write a python statement to fill in the blanks so that the given output may be achieved:	2
()	import pandas as pd	
	import numpy as np	
	$d = \{ Rollno': [101 102 103 104] \}$	
	'FCO'·[70 80 50 80] 'BST'·[60 50 60 90]}	
	df = nd DataErame(d)	
	df = pd. bdd r diffe(d)	
	nrint(df1)	
	Rollno 410	
	FCO 280	
	BST 260	
	dtype: int64	
a)	dtype: int64 Write python statement to create a two-dimensional array of 4 rows and 3 columns. The	1
g)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones	1
g)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions	1
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions	1
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Eind the output for the following:	1
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd	1
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as pp	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = ['Marks1':[10, 20, 20, 40].)	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]}	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df)	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df)	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df.apply(np.cumsum))	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df.apply(np.cumsum))	2
g) h)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df.apply(np.cumsum))	2
g) h) 2. a)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df.apply(np.cumsum))	2
g) h) 2. a)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df, apply(np.cumsum))	1 2 2 2
g) h) 2. a)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df.apply(np.cumsum))	1 2 2 2
g) h) 2. a)	dtype: int64 Write python statement to create a two- dimensional array of 4 rows and 3 columns . The array should be filled with ones. Differentiate between apply() and applymap() functions OR Find the output for the following: import pandas as pd import numpy as np d = {'Marks1':[10,20,30,40],\ 'Marks2':[50,70,60,80]} df=pd.DataFrame(d) print(df) print(df, apply(np.cumsum))	1 2 2

'C	uantity':[100	,100,200,250],	λ	
'C	ost':[1000,15	00,1200,900]}		
df =	pd.DataFram	e(d)		
df1	=			
prin	t(df1)			
	Product	Quantity	Cost	
0	Apple	100	1000	
1	Pear	100	1500	
2	Banana	200	1200	
3	Grapes	250	900	
OR				
For	the given cod	e fill in the bla	inks so that we get the desired output with maximum value for	
Qua	ntity and Ave	rage Value for	Cost:	
imp	ort pandas as	pd		
imp	ort numpy as	np		
d =	{'Product':['Ap	ople','Pear','Ba	anana','Grapes'],\	
'C	uantity':[100	,150,200,250],	λ.	
'C	ost':[1000,15	00,1200,900]}		
df =	pd.DataFram	e(d)		
df1	=			
prin	t(df1)			
Qua	ntity 250.0)		
Cos	t 1150.	0		
dty	be: float64			
Wh	at is the use o	f pipe() functio	on?	1
Con	sider the nda	rrays Arr1 and	Arr2.	2
Arr	L= array([[0,1	L,2],		
	[3,4	4,5],		
	[6,	7,8]])		
Arr	2= array([[10]	,20,30],		
	[40),50,60],		
	[70),80,90]])		
Wh	at will be the i	resultant array	γ, if the following statement is executed?	
np.l	nstack((Arr2,A	Arr1))		
Wri	te python stat	ement to crea	ate a one –dimensional array using arrange() function	2
.Ele	ments will be	in the range 10	0 to 30 with a step of 4 (including both 10 and 30). Reshape	
this	one-dimensio	onal array to tv	wo dimensional array of shape(2,3). Then display only those	
eler	nents of this t	wo –dimensio	nal array which are divisible by 5.	

e)	Find O/P for the following program code:	2						
	import pandas as pd							
	df1=pd.DataFrame({'Icecream':['Vanila','ButterScotch','Caramel'],							
	'Cookies':['Goodday','Britannia', 'Oreo']})							
	df2=pd.DataFrame({'Chocolate':['Dairy							
	Milk', 'Kitkat'], 'Icecream':['Vanila', 'ButterScotch'], 'Cookies':['Hide and Seek', Britannia']})							
t)	Generation the following deteframes :							
1)		2						
	mark1 mark2 mark1 mark2							
	2 15 30 2 20 30							
	3 40 70 3 50 30							
	Write the commands to do the following operations on the dataframes given above :							
	(i) To rename column mark1 as Score1 in both the dataframes df1 and df2.							
	(ii) To change index label of df1 from 0 to zero and from 1 to one.							
g)	What will be the output of the following code:	2						
	import matplotlib.pyplot as p							
	x=[6,7,8,9,10]							
	y=[60,40,55,30,70]							
	p.title('Secondary Class Strength')							
	p.xlabel('Class')							
	p.ylabel('No. of students')							
	p.bar(x,y)							
	p.show()							
	OR							
	Fill in the blank with appropriate pyplot methods:							
	import matplotlib.pyplot as p							
	Year=[2000,2002,2004,2006]							
	Rate=[21.0,20.7,21.2,21.6]							
	# To draw a line graph							
	p.xlabel('Year')							
	p.ylabel('Rate')							
	p.title('Fuel Rates in every Two Year')							
	("Graph1.pdf") # To save the graph							
	p.show()							
	What will be the output of the following code:							
h)	Write a python program to draw a bar chart with the following information:	4						
,	City pollution	_						
	Kolkata 78							
1								

	Delhi	91		
	Kanpur	88		
	Patna	90		
	Banglore	82		
	The barchart	should have t	he following features:	
	a) X-axis	label should	be City and Y-axis label should be Pollution	
	b) The ti	tle of the cha	rt should be Pollution Index	
	c) The co	olour of the b	ars should be Red	
	Use proper ir	nport stateme	ents in the program.	
	OR			
	Mrito a pyth	on program to	draw a histogram with following information:	
			o following information	
			he score and V-axis should be Frequency	
	a) A-axis b) The ti	tle should be	Frequency of Score	
	c) The c	olour of histor	gram should be blue with 10 bins	
	Lise proper in	nnort statem	ents in the program	
				_
			SECTION- B	
3				
٦. ۵١	What is mear	nt hy Softwar	Engineering?	1
b)	What is Softy	vare process?		
5)	Mention two	advantages a	nd two disadvantages of Waterfall model	
	OR	aavantagesa	ind two disadvantages of waterian model.	
	Draw labelled	d diagram of E	volutionary Software process model	
c)	Mention two	advantages c	f Incremental Software Delivery model.	2
	OR	U		
	Mention two	advantages c	of Spiral delivery model.	
4.				
a)	"Working in a	a pair in Pair P	Programming increases efficiency and reduces time". Justify.	1
b)	Who is respo	nsible for mal	king sure that the Scrum has been understood and enacted and	1
	also presides	over the Scru	im meeting?	
c)	What are Cor	nmit – Updat	e in version control system	2
	Or			
	What are Pus	sh-Pull reques	ts in version control system	
d)	Draw a busin	ess use case c	liagram of the following scenario for a grocery shop	3

	i) Customers can purchase goods	
	ii) Shop owner performs billing	
	iii) Inventory is updated after each transaction	
e)	Mention any two features of GIT.	2
	OR	
	Who are actors in a Use-case diagram? Name the CRUD operations required in creating Use-	
	case diagrams.	
	SECTION- C	
5.		
a)	Write Django command to create a project with name 'IP'	2
	OR	
	Write command to run the Django server.	
b)	Mention two differences between GET and POST methods	2
	OR	
	Write the method used to read a CSV file.	
	Which command is used to activate virtual environment.	
c)	Mention one difference between fetchone() and fetchall() method.	1
d)	The 'STUDENT' table is stored in the database 'SCHOOL' in MySQL. The database credentials	4
	includes host as 'localhost', user as 'root' and password as 'cloud'. Write python script to do	
	the following:	
	i. Import necessary modules to establish MySQL connectivity with Python	
	ii. Write a statement to establish connection to the database using given credentials	
	iii. Check the connectivity, whether connection OK or NOT OK.	
	iv. Write python statement to create a cursor object	
	v. Write python statement to close the connection	
6.		
a)	i) State one difference between having and where clause.	1
	II) "Pay" is a column name for the Pay of staff in a table "Schools". The SQL queries	1
	SELECT count/*) EDOM Schoole	
	and	
	SELECT count(Pay) EROM Schools:	
	The outputs obtained are 40 and 39 in both the queries respectively.	
	What is the reason behind different output?	
b)	Consider the table TEACHER given below. Write commands in SOL for (i) to (iii) and output for	r
~/	(iv) to (v). Note: Hiredate is in mm/dd/vvvv format	
	TEACHER	
	ID Name Department Hiredate Category Gender Salary	
	pepartment prictate category Genuer Salary	

	1	Taniya	Social Studies	03/17/1994	TGT	F	25000	
	2	Abhishek	Art	02/12/1990	PRT	М	20000	
	3	Sanjana	English	05/16/1980	PGT	F	30000	
	4	Vishwajeet	English	10/16/1989	TGT	М	25000	
	5	Aman	Hindi	08/1/1990	PRT	F	22000	
	6	Pritam	Math	03/17/1980	PRT	F	21000	
	7	RajKumar	Science	09/2/1994	TGT	м	27000	
	8	Sital	Math	11/17/1980	TGT	F	24500	
	i. To disp	lay all information abo	ut teachers of Fe	emale PGT Te	achers.	1	1	1
	ii. To list	names, departments ar	nd date of hiring	g of all the tea	chers in des	cending o	order of	1
	date of j	oining.						
	iii. To co	unt the number of teac	hers and sum of	their salary d	epartment	wise.		1
	iv. SELEC	T MAX(Hiredate) ,Gend	er FROM Teach	er group by G	ender;			1/2
	v. SELEC	T COUNT(DISTINCT(Dep	artment)) FROM	1 Teacher;				1/2
	r		SECTIC	DN- D				
7.								
a)	Which of	t the following is NOT a	n intellectual pro	operty?				1
	(I) A poe	m written by a poet						
	(II) An or	iginal painting made by	a painter					
	(III) Irad	emark of a Company						
1-)	(IV) A rer	nixed song						
(a	Fill in the	e blanks: Gebool: ee elbere lebelle						1
	An act of	r stealing others intelled	ctual Property w	ithout their c	onsent of w	ithout citii	ng the	
	source is	s called						
	Name th	e cyber law enforced in	india to provide	e legal recogn	ition to elec	tronic cor	nmerce	
<u> </u>	and to fa	icilitate filing of electroi	nic records with	the Governm	ent			
c)	Give the	full form of: i) GPL						1
d)	Mention	two benefits of e-wast	e recycling.					1
e)	Suggest	two measures to avoid	Credit Card Frau	ıd.				2
f)	Differen	tiate between Public Do	main Software	and Proprieta	ry Software			2
g)	Bit-coin	is a kind of						1
h)	List any o	one disability issue face	d in the using co	omputers with	n respect to	specially a	abled	1
	students							

KENDRIYA VIDYALAYA SANGATHAN- KOLKATA REGION

PREBOARD-1 EXAMINATION (2019-20) - THEORY

MARKING SCHEME

INFORMATICS PRACTICES NEW (065) - CLASS XII

Max Marks: 70

Time: 3

hrs

General Instructions:

- All questions are compulsory
- Question Paper is divided into 4 sections A,B,C and D.
- Section A comprises of questions(1 and 2)
 - iii. Question 1 comprises Data Handling-2(DH-2)(Series, Numpy)
 - iv. Question 2 comprises of question from Data Handling -2(DH-2)(Data Frames and its operations)
- Section B comprises of questions from Basic Software Engineering.
- Section C comprises of questions from Data Management-2(DM-2)
- Section D comprises of questions from Society, Law and Ethics-2(SLE-2)

	SECTION-A					
1.						
(a)	[30 40 50 60 70]	1				
(b)	 Memory consumption is lesser in Numpy as compared to List 	1				
	 Numpy is faster in execution as compared to List 					
	 Numpy supports vectorized operations whereas List does not. 					
	 Numpy works with homogeneous elements whereas List can work with 					
	heterogeneous elements					
	 Once created size of Numpy array cannot be changed whereas Size can be 					
	changed in a List even after creation					
	(Any two differences) Each difference carries ½ mark					
(c)	np.cov(A,B) # COVARIANCE	2				
	np.corrcoef(A,B) # CORRELATION COEFFICIENT					

(d)	House	Blue	Red		2
	Student				
	Ali	120.0	NaN		
	Tom	NaN	140.0		
(e)	i) a[0]	or	a[0,:]	1 mark	2
	ii) a[:,1]	or	a[0:3,1]	1 mark	
	Any othe	er cor	rect ansv	wer can be given marks.	
(f)	df1 = df.	apply	(np.sum)		2
g)	Import n	nump	y as np		1
	Arr=np.c	ones(4,3],dTy	pe=np.int64)	
h)	apply() is	s a sei	ries funct	ion, so it applies the given function to one row or one columnof	2
	the data	frame	e(as singl	le row/column of a dataframe is equivalent to a series);	
	applyma	p() is	an eleme	ent function, so it applies the given function to each individual	
	element	, sepa	rately- w	vithout taking into account other elements.	
	OR				
	Marks1	1 Mai	rks2		
	0 10	50			
	1 20	70			
	2 30	60			
	3 40	80			
	Marks1	1 Ma	rks2		
	0 10	50			
	1 30	120			
	2 60	180			
	3 100	260)		
2					
2. 2)	df1 - df	sort v	رعاييمد/['(Quantity' 'Cost'])	2
<i>a</i>)		5011_			2
	df1=df a	σσ({'C)uantity'·	nn max 'Cost':nn mean})	
	(2 marks	s for c	orrect an	nswer Partial marks can be awarded for identifying correct	
	method	s)	onceran	iswern artial marks can be awarded for identifying correct	
b)	Pipe() fu	nctio	n helps in	h chaining of function in the order they are executed.	1
	(1 mark	for co	orrect ans	swer)	
	Marks ca	an be	given for	r any proper satisfactory answer.	
c)	[[10 20	30 0	1 2]		2
	[40 50	60 3	4 5]		
	[70 80	90 6	7 8]]		
	(2 mark	for co	orrect ans	swer)	

d)	import numpy as np	2				
	p=np.arange(10,31,4)					
	a=p.resnape(2,3)					
	$D = \Pi p \cdot extract(\Pi p \cdot \Pi O u(a, 5) = -0, a)$					
		2				
e)	COOKIES	Z				
	1 ButterScotch Britannia					
	2 NaN NaN					
	Full marks for correct output					
	1 mark if any one line is correct ,1 and ½ marks if					
	any two lines are correct.					
f)	(i) df1.rename(columns={'mark1':'marks1'}, inplace=True)	2				
	(ii) df1.rename(index = {0: "zero", 1:"one"}, inplace = True)					
g)	Secondary Class Strength	2				
	60 -					
	v 50 -					
	dentr					
	20-					
	10 -					
	6 7 8 9 10 Class					
	OR					
	p.plot(Year,Rate)					
	p.savefig ("Graph1.pdf")					
h)	import matplotlib.pyplot as plt	4				
,	import numpy as np					
	city = np.array(['Kolkata','Delhi','Kanpur','Patna','Bangalore'])					
	pollution = np.array([78,91,88,90,82])					
	plt.xlabel('City')					
	plt.ylabel('Pollution')					
	plt.title('Pollution Index')					
	plt.bar(city,pollution, color='red')					
	plt.show()					
	¹ / ₂ mark for import, ¹ / ₂ each for declaring two arrays or lists					
	¹ / ₂ mark each for xlabel, ylabel and title					
	¹ / ₂ mark for plt.bar() function with correct parameters					

	1/2 mark for show function				
	OR				
	import matplotlib.pyplot as plt				
	import numpy as np				
	arr = np.array([10,15,10,10,10,15,20,20,20,20,20,25,25])				
	plt.xlabel('Score')				
	plt.ylabel('Frequency')				
	plt.title('Frequency of Score')				
	plt.hist(arr, color='blue',bins=10)				
	plt.show()				
	½ mark for import, ½ for declaring array or list				
	½ mark each for xlabel, ylabel and title				
	1 mark for plt.hist() function with correct parameters				
	½ mark for show function				
	SECTION-B				
3.					
a)	1 mark for proper definition of Software Engineering	1			
b)	Software process is defined as the structured set of activities that are required to develop	3			
	the software system.				
	Advantages of Waterfall Model:				
	i) Allows separate schedules and eadlines for each department.				
	ii) Easy to understand model				
	iii) Easy to manage model				
	iv) Not a complex model				
	Disadvantages of Waterfall model:				
	i) No estimation of time and cost				
	ii) Difficult to incorporate changes				
	iii) Not for complex systems				
	1 marks for proper definition of Software process.				
	Any two Advantages of Waterfall model- ½ mark for one advantage				
	Any two Disadvantages of Waterfall model- ½ mark for one disadvantage				
	OR				
	EVOLUTIONARY PROCESS MODEL				

		1
e)	i) Automatic Backup of whole repository	2
	ii) Maintains full history of changes	
	iii) Allows offline Repository access	
	iv) Efficient Algorithm	
	(Any two feature . Each feature carries 1 mark.)	
	OR	
	An actor is a person, organization, or external system that plays a role in one or more	
	interactions with the system. (1 mark)	
	CRUD- Create Read Update Delete (1 mark)	
	Partial marking-> ½ marks for any two operations	
	SECTION-C	
5.		
a)	django-admin startproject IP	2
	OR	
	python manage.py runserver	
b)	GET is used to request data from a specified resource	2
	GET request remain in browser history	
	GET request have size restriction	
	GET request should not be used for sending sensitive information	
	POST request is used to send data to a server to create or modify a resource	
	POST request do not remain in browser history	
	POST request have no length restriction	
	POST request in not visible in the HTTP header	
	(1 mark for one correct difference)	
	read_csv() (1mark)	
	virtualeny (1mark)	
c)	fetchone() is used to fetch/get only one record from the table/SOL Query whereas	1
•,	fetchall() is used to get all records from the table/SOL query	
d)	import msgl connector as mc % mark	4
u,	con = mc.connect(host='localhost', user='root', passwd='cloud', database='SCHOOL') 1 mark	-
	if con.is_connected()==True: ½ mark	
	print("Connection OK")	
	else:	
	print("Connection NOT OK") ½ mark for else and print statement	
	my_cur = con.cursor() ½ mark	
	con.close() ½ mark	
6.		
1		1

a)	i)WHERE conditions are applicable on individual rows whereas HAVING conditions are	1
	applicable on groups as formed by GROUP BY clause.	1
	ii) The reason behind different output is count(*) includes NULL value whereas	
	count(PAY) excludes NULL value while counting.	
b)	i. Select * from Teacher where Category= "PGT" and Gender='F';	1
	ii. Select Name, Department, Hiredate from Teacher order by Hiredate desc;	1
	iii. Select count(*), sum(salary) from Teacher group by Department;	1
	iv. <u>MAX(Hiredate) Gender</u>	1/2
	03/17/1994 F	
	09/2/1994 M	1/2
	v. <u>COUNT(DISTINCT(Department))</u>	
	6	
	SECTION-D	
7.		
a)	A remixed song	1
b)	Plagiarism	1
	OR	
	IT Act 2000 / IT Amendment Act 2008	
c)	i) General Public License ii) Open Source Software (1/2 mark for each)	1
d)	i) Allows recovery of precious metals	1
	ii) Protects public health	
	iii) Creates jobs	
	iv) Conserving landfill space	
	(½ marks for each benefit) (1 mark for any two benefits)	
e)	i) Never disclose your Credit Card Number and CVV Number and PIN Numbers to	2
	anybody.	
	ii) Never disclose your AADHAR or PAN number during online purchases	
	Or any other proper measure is allowed.	
0	(1 mark for each measure)	
T)	Public Domain Software: -	2
	1) It is free and can be used without restriction	
	2) It is outside the scope of copyright and licensing.	
	1) It is poither free per available for public	
	2) It has a proper license and user has to huy that license in order to use it	
	(At least two points of difference where each point carries 1 mark or any proper	
	supporting satisfactory answer can be given full marks)	
g)		1
h)	1) Unavailability of Teachers Materials/Aids	1
,	2) Lack of Special Needs Teachers	-
	3) Lack of Supporting Curriculum	
	-,	

(Any one disability issue– 1 mark)	
------------------------------------	--
