
Informatics Practices
Class XI (As per CBSE Board)

Chapter 6
Data

Types &

Debugging

Visit : python.mykvs.in for regular updates

Termwise
syllabus
2021-22

Data handling

Most of the computer programming
language support data type,
variables,operator and expression like
fundamentals.Python also support these.

Data Types
Data Type specifies which type of value a
variable can store. type() function is used to
determine a variable's type in Python.

Visit : python.mykvs.in for regular updates

Data type continue

Visit : python.mykvs.in for regular updates

Data Types In Python
1. Number

2. String

3. Boolean

4. List

5. Tuple

6. Set

7. Dictionary

Data type continue

Visit : python.mykvs.in for regular updates

Mutable and Immutable Data type
A mutable data type can change its state or contents and
immutable data type cannot.
Mutable data type:
list, dict, set, byte array
Immutable data type:
int, float, complex, string, tuple, frozen set [note: immutable
version of set], bytes

Mutability can be checked with id() method.
x=10
print(id(x))

x=20

print(id(x))

#id of both print statement is different as integer is immutable

Visit : python.mykvs.in for regular updates

1. Number In Python
It is used to store numeric values

Python has three numeric types:
1. Integers
2. Floating point numbers
3. Complex numbers.

Data type continue

Visit : python.mykvs.in for regular updates

1. Integers
Integers or int are positive or negative

numbers with no decimal point. Integers in Python
3 are of unlimited size.
e.g.

a= 100
b= -100
c= 1*20
print(a)
print(b)
print(c)

Output :-
100
-100
200

Data type continue

Visit : python.mykvs.in for regular updates

Type Conversion of Integer
int() function converts any data type to integer.
e.g.

a = "101" # string
b=int(a) # converts string data type to integer.
c=int(122.4) # converts float data type to integer.
print(b)
print(c)Run Code
Output :-
101
122

Data type continue

Visit : python.mykvs.in for regular updates

2. Floating point numbers
It is a positive or negative real numbers with

a decimal point.
e.g.

a = 101.2
b = -101.4
c = 111.23
d = 2.3*3
print(a)
print(b)
print(c)
print(d)Run Code

Output :-
101.2
-101.4
111.23
6.8999999999999995

Data type continue

Visit : python.mykvs.in for regular updates

Type Conversion of Floating point numbers
float() function converts any data type to floating point
number.

e.g.
a='301.4' #string
b=float(a) #converts string data type to floating point number.
c=float(121) #converts integer data type to floating point number.
print(b)
print(c)Run Code

Output :-
301.4
121.0

Data type continue

Visit : python.mykvs.in for regular updates

3. Complex numbers
Complex numbers are combination of a real

and imaginary part.Complex numbers are in the form
of X+Yj, where X is a real part and Y is imaginary part.
e.g.
a = complex(5) # convert 5 to a real part val and zero imaginary part

print(a)
b=complex(101,23) #convert 101 with real part and 23 as imaginary part

print(b)Run Code

Output :-
(5+0j)
(101+23j)

Data type continue

Visit : python.mykvs.in for regular updates

2. String In Python
A string is a sequence of characters. In python we can create
string using single (' ') or double quotes (" ").Both are same in
python.

e.g.
str='computer science'
print('str-', str) # print string
print('str[0]-', str[0]) # print first char 'h'
print('str[1:3]-', str[1:3]) # print string from postion 1 to 3 'ell'
print('str[3:]-', str[3:]) # print string staring from 3rd char 'llo world'
print('str *2-', str *2) # print string two times
print("str +'yes'-", str +'yes') # concatenated string

Output
str- computer science
str[0]- c
str[1:3]- om
str[3:]- puter science
str *2- computer sciencecomputer science
str +'yes'- computer scienceyes

Data type continue

Visit : python.mykvs.in for regular updates

Iterating through string

e.g.
str='comp sc'
for i in str:

print(i)

Output
c
o
m
p

s
c

Data type continue

Visit : python.mykvs.in for regular updates

3. Boolean In Python
It is used to store two possible values either true or
false
e.g.
str="comp sc"
boo=str.isupper() # test if string contains upper case
print(boo)

Output
False

Data type continue

Visit : python.mykvs.in for regular updates

4.List In Python
List are collections of items and each item has its own index
value.

5. Tuple In Python
List and tuple, objects mean you cannot modify the contents
of a tuple once it is assigneboth are same except ,a list is
mutable python objects and tuple is immutable Python
objects. Immutable Python d.
e.g. of list
list =[6,9]
list[0]=55
print(list[0])
print(list[1])

OUTPUT
55
9

e.g. of tuple
tup=(66,99)
Tup[0]=3 # error message will be displayed
print(tup[0])
print(tup[1])

Data type continue

Visit : python.mykvs.in for regular updates

6. Set In Python
It is an unordered collection of unique and
immutable (which cannot be modified)items.

e.g.
set1={11,22,33,22}
print(set1)

Output
{33, 11, 22}

Data type continue

Visit : python.mykvs.in for regular updates

7. Dictionary In Python
It is an unordered collection of items and each item
consist of a key and a value.
e.g.
dict = {'Subject': 'comp sc', 'class': '11'}
print(dict)
print ("Subject : ", dict['Subject'])
print ("class : ", dict.get('class'))

Output
{'Subject': 'comp sc', 'class': '11'}
Subject : comp sc
class : 11

Data type continue

Type conversion

Visit : python.mykvs.in for regular updates

The process of converting the value of one data type
(integer, string, float, etc.) to another data type is called
type conversion.
Python has two types of type conversion.

Implicit Type Conversion
Explicit Type Conversion

Implicit Type Conversion:
In Implicit type conversion, Python automatically converts one data type to another data
type. This process doesn't need any user involvement.
e.g.
num_int = 12
num_flo = 10.23
num_new = num_int + num_flo
print("datatype of num_int:",type(num_int))
print("datatype of num_flo:",type(num_flo))
print("Value of num_new:",num_new)
print("datatype of num_new:",type(num_new))

OUTPUT
('datatype of num_int:', <type 'int'>)
('datatype of num_flo:', <type 'float'>)
('Value of num_new:', 22.23)
('datatype of num_new:', <type 'float'>)

Type conversion

Visit : python.mykvs.in for regular updates

Explicit Type Conversion:
In Explicit Type Conversion, users convert the data type of an object to required
data type. We use the predefined functions like int(),float(),str() etc.
e.g.
num_int = 12
num_str = "45"
print("Data type of num_int:",type(num_int))
print("Data type of num_str before Type Casting:",type(num_str))
num_str = int(num_str)
print("Data type of num_str after Type Casting:",type(num_str))
num_sum = num_int + num_str
print("Sum of num_int and num_str:",num_sum)
print("Data type of the sum:",type(num_sum))

OUTPUT
('Data type of num_int:', <type 'int'>)
('Data type of num_str before Type Casting:', <type 'str'>)
('Data type of num_str after Type Casting:', <type 'int'>)
('Sum of num_int and num_str:', 57)
('Data type of the sum:', <type 'int'>)

Debugging

Debugging means the process of finding errors, finding
reasons of errors and techniques of their fixation.
An error, also known as a bug, is a programming code
that prevents a program from its successful
interpretation.
Errors are of three types –
• Compile Time Error
• Run Time Error
• Logical Error

Visit : python.mykvs.in for regular updates

Debugging

Compile time error :

These errors are basically of 2 types –
Syntax Error :Violation of formal rules of a programming
language results in syntax error.
For ex-
len('hello') = 5

File "<stdin>", line 1
SyntaxError: can't assign to function call
Semantics Error: Semantics refers to the set of rules
which sets the meaning of statements. A meaningless
statement results in semantics error.
For ex-
x * y = z

Visit : python.mykvs.in for regular updates

Debugging

Logical Error
If a program is not showing any compile time error or run time
error but not producing desired output, it may be possible that
program is having a logical error.
Some example-
• Use a variable without an initial value.
• Provide wrong parameters to a function
• Use of wrong operator in place of correct operator required for

operation
X=a+b (here – was required in place of + as per requirement

Visit : python.mykvs.in for regular updates

Debugging

Run time Error
These errors are generated during a program execution
due to resource limitation.
Python is having provision of checkpoints to handle
these errors.
For ex-
a=10
b=int(input(“enter a number”))
c=a/b
Value of b to be entered at run time and user may enter 0 at run
time,that may cause run time error,because any number can’t be
devided by 0

Visit : python.mykvs.in for regular updates

Debugging

Run time Error
In Python, try and except clauses are used to handle an
exception/runtime error which is known as exception
handling
try:
code with probability of exception will be written
here.
a=10
b=int(input(“enter a number”))
c=a/b
except:
#code to handle exception will be written here.
print(“devide by zero erro”)

Visit : python.mykvs.in for regular updates

Debugging

Available exception in python

Visit : python.mykvs.in for regular updates

Exception Name Description

IOError This exception generates due to problem in input or output.

NameError This exception generates due to unavailability of an identifier.

IndexError This exception generates when subscript of a sequence is out of range.

ImportError This exception generates due to failing of import statement.

TypeError This exception generates due to wrong type used with an operator or a
function.

ValueError This exception generates due to wrong argument passed to a function.

ZeroDivisionError This exception generates when divisor comes to zero.

OverFlowError This exception generates when result of a mathematical calculation exceeds the
limit.

KeyError This exception generates due to non-availability of key in mapping of dictionary.

FOFError This exception generates when end-of-file condition comes without reading
input of a built in function.

Debugging

In python debugging can be done through
• Print line debugger
• Debugging tool

Visit : python.mykvs.in for regular updates

Debugging

Print line debugger
– At various points in your code, insert print statements that log the
state of the program
• You will probably want to print some strings with some variables
• You could just join things together like this:
>>>x=9
>>>print 'Variable x is equal to ' + str(x)
Output : Variable x is equal to 9
• … but that gets unwieldy pretty quickly
• The format function is much nicer:
>>>x=3
>>>y=4
>>>z=9
>>>print 'x, y, z are equal to {}, {}, {}'.format(x,y,z)
Output : x, y, z are equal to 6, 4, 8

Visit : python.mykvs.in for regular updates

Print line debugger
• Python Debugger: pdb
– insert the following in your program to set a breakpoint
– when your code hits these lines, it’ll stop running and launch an
interactive prompt for you to inspect variables, step through the
program, etc.

import pdb
pdb.set_trace()

n to step to the next line in the current function
s to step into a function
c to continue to the next breakpoint
you can also run any Python command, like in the interpreter

Visit : python.mykvs.in for regular updates

Debugging

Create a.py file with below code and run it in python use n to step
next line.
num_list = [500, 600, 700]
alpha_list = ['x', 'y', 'z']

import pdb
pdb.set_trace() #debugging code
def nested_loop():

for number in num_list:
print(number)
for letter in alpha_list:

print(letter)

if __name__ == '__main__':
nested_loop()

While executing above code whole program will be traced.
Another way is to invoke the pdb module from the command line.
$ python -m pdb mycode.pyVisit : python.mykvs.in for regular updates

Debugging

Debugger tool
Another technique for removing an error is code tracing. In this
technique, lines are to be executed one by one and their effect on
variables is to be observed. Debugging tool or debugger tool is
provided in Python for this.
In Python3.6.5, to make debugger tool available, click on debugger
option in debug menu.

Visit : python.mykvs.in for regular updates

Debugging

Debugger tool
Then, a box will be opened and a message will come saying DEBUG
ON

Visit : python.mykvs.in for regular updates

Debugging

Then, we will open our program from file menu and will run it.

Debugger tool
Then after it will be shown like this in debugger.

Visit : python.mykvs.in for regular updates

Debugging

Click on STEP button for each line execution one by one and result
will be displayed in output window. When we will get wrong
value, we can stop the program there and can correct the code.

