
Informatics Practices
Class XII (As per CBSE Board)

Chapter 3

Data

Visualization

New
syllabus
2021-22

Visit : python.mykvs.in for regular updates

Data visualization

Visit : python.mykvs.in for regular updates

"A picture is worth a thousand words". Most of us are familiar
with this expression. Data visualization plays an essential role in
the representation of both small and large-scale data. It especially
applies when trying to explain the analysis of increasingly large
datasets.

Data visualization is the discipline of trying to expose the data to
understand it by placing it in a visual context. Its main goal is to
distill large datasets into visual graphics to allow for easy
understanding of complex relationships within the data.

Several data visualization libraries are available in Python, namely
Matplotlib, Seaborn, and Folium etc.

Purpose of
Data visualization

Visit : python.mykvs.in for regular updates

• Better analysis
• Quick action
• Identifying patterns
• Finding errors
• Understanding the story
• Exploring business insights
• Grasping the Latest Trends

Plotting library

Visit : python.mykvs.in for regular updates

Matplotlib is the whole python package/ library used to create 2D
graphs and plots by using python scripts. pyplot is a module in
matplotlib, which supports a very wide variety of graphs and plots
namely - histogram, bar charts, power spectra, error charts etc. It is
used along with NumPy to provide an environment for MatLab.

Pyplot provides the state-machine interface to the plotting library in
matplotlib.It means that figures and axes are implicitly and
automatically created to achieve the desired plot.For example, calling
plot from pyplot will automatically create the necessary figure and
axes to achieve the desired plot. Setting a title will then automatically
set that title to the current axes object.The pyplot interface is
generally preferred for non-interactive plotting (i.e., scripting).

Matplotlib –
pyplot features

Visit : python.mykvs.in for regular updates

Following features are provided in matplotlib library for
data visualization.
• Drawing – plots can be drawn based on passed data

through specific functions.
• Customization – plots can be customized as per

requirement after specifying it in the arguments of the
functions.Like color, style (dashed, dotted), width; adding
label, title, and legend in plots can be customized.

• Saving – After drawing and customization plots can be
saved for future use.

How to plot
in matplotlib

Visit : python.mykvs.in for regular updates

Steps to plot in matplotlib
• Install matplotlib by pip command -

pip install matplotlib in command prompt
• Create a .py & import matplotlib library in it using

- import matplotlib.pyplot as plt statement
• Set data points in plot() method of plt object
• Customize plot through changing different

parameters
• Call the show() method to display plot
• Save the plot/graph if required

Types of plot
using matplotlib

Visit : python.mykvs.in for regular updates

• LINE PLOT
• BAR GRAPH
• HISTOGRAM
• PIE CHART
• FREQUENCY POLYGON
• BOX PLOT
• SCATTER PLOT

Matplotlib –line plot

Visit : python.mykvs.in for regular updates

Line Plot
A line plot/chart is a graph that shows the frequency of
data occurring along a number line.
The line plot is represented by a series of datapoints
connected with a straight line. Generally line plots are
used to display trends over time. A line plot or line graph
can be created using the plot() function available in pyplot
library. We can, not only just plot a line but we can
explicitly define the grid, the x and y axis scale and labels,
title and display options etc.

Visit : python.mykvs.in for regular updates

E.G.PROGRAM
import numpy as np
import matplotlib.pyplot as plt
year = [2014,2015,2016,2017,2018]
jnvpasspercentage = [90,92,94,95,97]
kvpasspercentage = [89,91,93,95,98]
plt.plot(year, jnvpasspercentage, color='g')
plt.plot(year, kvpasspercentage, color='orange')
plt.xlabel(‘Year')
plt.ylabel('Pass percentage')
plt.title('JNV KV PASS % till 2018')
plt.show()

Note:- As many lines required call
plot() function multiple times with
suitable arguments.

Matplotlib –line plot

Matplotlib –line plot

Visit : python.mykvs.in for regular updates

Line Plot customization
• Custom line color

plt.plot(year, kvpasspercentage, color='orange')
Change the value in color argument.like ‘b’ for blue,’r’,’c’,…..

• Custom line style
plt.plot([1,1.1,1,1.1,1], linestyle='-' , linewidth=4).
set linestyle to any of '-‘ for solid line style, '--‘ for dashed, '-.‘ , ':‘ for dotted line

• Custom line width
plt.plot('x', 'y', data=df, linewidth=22)
set linewidth as required

• Title
plt.title('JNV KV PASS % till 2018') – Change it as per requirement

• Lable - plt.xlabel(‘Year') - change x or y label as per requirement
• Legend - plt.legend(('jnv','kv'),loc='upper right‘,frameon=False)

Change (),loc,frameon property as per requirement

Matplotlib –Bar Graph

Visit : python.mykvs.in for regular updates

Bar Graph

A graph drawn using rectangular bars to show how
large each value is. The bars can be horizontal or
vertical.
A bar graph makes it easy to compare data
between different groups at a glance. Bar graph
represents categories on one axis and a discrete
value in the other. The goal bar graph is to show
the relationship between the two axes. Bar graph
can also show big changes in data over time.

Plotting with Pyplot

Visit : python.mykvs.in for regular updates

Plot bar graphs
e.g program
import matplotlib.pyplot as plt
import numpy as np
label = ['Anil', 'Vikas', 'Dharma', 'Mahen',
'Manish', 'Rajesh']
per = [94,85,45,25,50,54]
index = np.arange(len(label))
plt.bar(index, per)
plt.xlabel('Student Name', fontsize=5)
plt.ylabel('Percentage', fontsize=5)
plt.xticks(index, label, fontsize=5,
rotation=30)
plt.title('Percentage of Marks achieve by
student Class XII')
plt.show()
#Note – use barh () for horizontal bars

Matplotlib –Bar graph

Visit : python.mykvs.in for regular updates

Bar graph customization
• Custom bar color

plt.bar(index, per,color="green",edgecolor="blue")
Change the value in color,edgecolor argument.like ‘b’ for blue,’r’,’c’,…..

• Custom line style
plt.bar(index, per,color="green",edgecolor="blue",linewidth=4,linestyle='--')
set linestyle to any of '-‘ for solid line style, '--‘ for dashed, '-.‘ , ':‘ for dotted line

• Custom line width
plt.bar(index, per,color="green",edgecolor="blue",linewidth=4)
set linewidth as required

• Title
plt.title('Percentage of Marks achieve by student Class XII')
Change it as per requirement

• Lable - plt.xlabel('Student Name', fontsize=5)- change x or y label as per requirement
• Legend - plt.legend(('jnv','kv'),loc='upper right‘, frameon=False)

Change (),loc,frameon property as per requirement

Visit : python.mykvs.in for regular updates

A histogram is a graphical representation
which organizes a group of data points into
user-specified ranges.
Histogram provides a visual interpretation of
numerical data by showing the number of data
points that fall within a specified range of
values (“bins”). It is similar to a vertical bar
graph but without gaps between the bars.

Matplotlib –Histogram

Visit : python.mykvs.in for regular updates

Histogram in Python –
import numpy as np
import matplotlib.pyplot as plt
data = [1,11,21,31,41]
plt.hist([5,15,25,35,45, 55], bins=[0,10,20,30,40,50, 60], weights=[20,10,45,33,6,8],
edgecolor="red")
plt.show()

#first argument of hist() method is
position (x,y Coordinate) of weight,
where weight is to be displayed.
No of coordinates must match with
No of weight otherwise error will
generate
#Second argument is interval
#Third argument is weight for bars

Matplotlib –Histogram

Visit : python.mykvs.in for regular updates

Histogram in Python –
For better understading we develop the same program with minor change .

import numpy as np
import matplotlib.pyplot as plt
data = [1,11,21,31,41]
plt.hist([5,15,25,35,15, 55], bins=[0,10,20,30,40,50, 60], weights=[20,10,45,33,6,8],
edgecolor="red")
plt.show()

at interval(bin)40 to 50 no bar because
we have not mentioned position from 40 to
50 in first argument(list) of hist method.
Where as in interval 10 to 20 width is being
Displayed as 16 (10+6 both weights are
added) because 15 is twice In first
argument.

Matplotlib –Histogram

Visit : python.mykvs.in for regular updates

Customization of Histogram –
By default bars of histogram is displayed in blue color but we can change it to
other color with following code .
plt.hist([1,11,21,31,41, 51], bins=[0,10,20,30,40,50, 60], weights=[10,1,0,33,6,8], facecolor='y',
edgecolor="red")

In above code we are passing ‘y’ as facecolor means yellow color to be displayed
in bars.
To give a name to the histogram write below code before calling show()
plt.title("Histogram Heading")
Edge color and bar color can be set using following parameter in hist() method
edgecolor='#E6E6E6',color='#EE6666 .color value can be rgb in hexadecimal form
For x and y label below code can be written
plt.xlabel('Value')
plt.ylabel('Frequency')

Matplotlib –Histogram

Visit : python.mykvs.in for regular updates

A pie graph/pie chart is a specialized graph used
in statistics. The independent variable is plotted
around a circle.
Pie Charts shows proportions and percentages
between categories, by dividing a circle into
proportional segments/parts. Each arc length
represents a proportion of each category, while
the full circle represents the total sum of all the
data, equal to 100%

Matplotlib –pie chart

Visit : python.mykvs.in for regular updates

e.g.program
import matplotlib.pyplot as plt
Data to plot
labels = 'Candidate1', 'Candidate2', 'Candidate3', 'Candidate4'
votes = [315, 130, 245, 210]
sizes=votes
colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']
explode = (0.1, 0, 0, 0) # explode 1st slice
Plot
plt.pie(sizes, explode=explode, labels=labels, colors=colors,

autopct='%1.1f%%', shadow=True, startangle=140)
plt.axis('equal')
plt.show()

Matplotlib –pie chart

Matplotlib –Pie chart

Visit : python.mykvs.in for regular updates

Pie chart customization
The pie chart drawn using the Matplotlib.pyplot can be customized of its several aspects.
• The startangle parameter rotates the pie chart by the specified number of degrees.

The rotation is counter clock wise and performed on X Axis of the pie chart.
• Shadow effect can be provided using the shadow parameter of the pie() function.

Passing True will make a shadow appear below the rim of the pie chart. By default
value of shadow is False and there will be no shadow of the pie chart.

• The wedges of the pie chart can be further customized using the wedgeprop
parameter. A python dictionary with the name value pairs describing the wedge
properties like edgecolor, linewidth can be passed as the wedgeprop argument.

• By setting the frame argument to True, the axes frame is drawn around the pie chart.
• Autopct parameter of the arc() function controls how the percentages are displayed in

the wedges. Either format string starting with a % can be specified or a function can
be specified.

e.g., %.1f will display percentage values in the format 25.0, 35.2 and so on.
%.2f%% will display percentage values in the format 50.25, 75.5 and so on.

Visit : python.mykvs.in for regular updates

A frequency polygon is a graph constructed by using lines to
join the midpoints of each interval, or bin. The heights of the
points represent the frequencies. A frequency polygon can
be created from the histogram or by calculating the
midpoints of the bins from the frequency distribution table.
There is no separate method for creating a frequency
polygon in matplotlib.First we have to create a step type
histogram.
plt.hist(x,bins=20,histtype=‘ste[‘)
Then join midpoint of each set of adjacent bins to create a
frequency polygon.

Matplotlib –
Frequency Polygon

Visit : python.mykvs.in for regular updates

e.g.program
import numpy as np
import matplotlib.pyplot as plt
data = [1,11,21,31,41]
plt.hist([5,15,25,35,15, 55],
bins=[0,10,20,30,40,50, 60],
weights=[20,10,45,33,6,8],
edgecolor="red",histtype='step')
#plt.hist(data, bins=20, histtype='step')
plt.xlabel('Value')
plt.ylabel('Probability')
plt.title('Histogram')
plt.show()
#Note – it’s customization is similar to histogram
customization

Frequency polygons
If we just connect the top center points of each bins then we obtain relative
frequency polygon.

Matplotlib –
Frequency Polygon

Matplotlib
– box plot

Visit : python.mykvs.in for regular updates

Box Plots
A Box Plot is the visual representation of the
statistical five number summary of a given
data set.
A Five Number Summary includes:
• Minimum
• First Quartile
• Median (Second Quartile)
• Third Quartile
• Maximum
Box plots are useful as they provide a visual
summary of the data enabling researchers to
quickly identify mean values, the dispersion
of the data set, and signs of skewness.

Visit : python.mykvs.in for regular updates

e.g.program
import matplotlib.pyplot as plt
value1 = [72,76,24,40,57,62,75,78,31,32]
value2=[62,5,91,25,36,32,96,95,30,90]
value3=[23,89,12,78,72,89,25,69,68,86]
value4=[99,73,70,16,81,61,88,98,10,87]
box_plot_data=[value1,value2,value3,value4]
box=plt.boxplot(box_plot_data,vert=1,patch_artist=
True,labels=['course1','course2','course3','course4'],
)
colors = ['cyan', 'lightblue', 'lightgreen', 'tan']

for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)

plt.show()

Note:- if vert=0 in boxplot() is set then horizontal
box plots will be drawn

Matplotlib
– box plot

Matplotlib –
scatter plot

Visit : python.mykvs.in for regular updates

Scatter plots

A scatter plot is a two-dimensional data visualization that uses
dots to represent the values obtained for two different
variables - one plotted along the x-axis and the other plotted
along the y-axis.

e.g.program
import matplotlib.pyplot as plt
weight1=[93.3,67,62.3,43,71,71.8]

height1=[116.3,110.7,124.8,176.3,137.1,113.9]
plt.scatter(weight1,height1,c='b',marker='o')

plt.xlabel('weight', fontsize=16)
plt.ylabel('height', fontsize=16)
plt.title('scatter plot - height vs weight',fontsize=20)
plt.show()

Matplotlib –
scatter plot

Visit : python.mykvs.in for regular updates

Customize Scatter plots
Adjust Color of Scatter Points -Utilize the c argument for the scatter
method and set it to green to make the scatter points green.
plt.scatter(weight1,height1,c=‘green',marker='o')
Adjust the Size of Scatter Points -Utilize the s argument in our scatter
method and pass in the value 75 to make larger scatter points that are
easier to see.
plt.scatter(weight1,height1,c=‘green',marker='o‘,s=75)
Adjust the Transparency of Scatter Points- Utilize the alpha argument in our
scatter method and pass in a numeric value between 0 and 1.
plt.scatter(weight1,height1,c=‘green',marker='o‘,s=75,alpha=0.5)
Change marker type- pass value as per requirement like marker=‘-
’,marker=‘v’ etc.

Matplotlib –
How to save plot

Visit : python.mykvs.in for regular updates

For future use we have to save the plot.To save any plot savefig()
method is used.plots can be saved like pdf,svg,png,jpg file
formats.
plt.savefig('line_plot.pdf')
plt.savefig('line_plot.svg')
plt.savefig('line_plot.png')
Parameter for saving plots .e.g.
plt.savefig('line_plot.jpg', dpi=300, quality=80, optimize=True,
progressive=True)
Which Export Format to Use?
The export as vector-based SVG or PDF files is generally preferred
over bitmap-based PNG or JPG files as they are richer formats,
usually providing higher quality plots along with smaller file sizes.

