
Computer Science
Class XII (As per CBSE Board)

Chapter 5
Data-structures:

lists,stack,queue

New
syllabus
2020-21

Visit : python.mykvs.in for regular updates

Data-structures

Visit : python.mykvs.in for regular updates

It a way of organizing and storing data in such a manner so that it can be accessed
and work over it can be done efficiently and less resources are required. It define the
relationship between the data and the operations over those data. There are many
various types of data structures defined that make it easier for the computer
programmer,to concentrate on the main problems rather than getting lost in the
details of data description and access.
Python Data Structure

Visit : python.mykvs.in for regular updates

List
It is a collections of items and each item has its own index value.
Index of first item is 0 and the last item is n-1.Here n is number of items in a list.
Indexing of list

Creating a list
Lists are enclosed in square brackets [] and each item is separated by a comma.
e.g.
list1 = [‘English', ‘Hindi', 1997, 2000];
list2 = [11, 22, 33, 44, 55];
list3 = ["a", "b", "c", "d"];

Data-structures

Access Items From A List
List items can be accessed using its index position.
e.g.
list =[3,5,9]
print(list[0])
print(list[1])
print(list[2]) output
print('Negative indexing')
print(list[-1])
print(list[-2])
print(list[-3])

Visit : python.mykvs.in for regular updates

3
5
9
Negative indexing
9
5
3

Data-structures

Iterating Through A List
List elements can be accessed using looping statement.
e.g.

list =[3,5,9]
for i in range(0, len(list)):

print(list[i])

Output
3
5
9

Visit : python.mykvs.in for regular updates

Data-structures

Important methods and functions of List

For detail on list click here

Visit : python.mykvs.in for regular updates

Function Description

list.append() Add an Item at end of a list

list.extend() Add multiple Items at end of a list

list.insert() insert an Item at a defined index

list.remove() remove an Item from a list

del list[index] Delete an Item from a list

list.clear() empty all the list

list.pop() Remove an Item at a defined index

list.index() Return index of first matched item

list.sort() Sort the items of a list in ascending or descending order

list.reverse() Reverse the items of a list

len(list) Return total length of the list.

max(list) Return item with maximum value in the list.

min(list) Return item with min value in the list.

list(seq) Converts a tuple, string, set, dictionary into list.

Data-structures

http://python.mykvs.in/presentation/class xi/computer science/List Manipulation.pdf

Stack:
A stack is a linear data structure in which all the insertion and
deletion of data / values are done at one end only.

Visit : python.mykvs.in for regular updates

 It is type of linear data structure.
 It follows LIFO(Last In First Out)

property.
 Insertion / Deletion in stack can

only be done from top.
 Insertion in stack is also known as

a PUSH operation.
Deletion from stack is also known

as POP operation in stack.

Data-structures

Applications of Stack:
• Expression Evaluation: It is used to evaluate prefix, postfix and infix

expressions.
• Expression Conversion: It can be used to convert one form of

expression(prefix,postfix or infix) to one another.
• Syntax Parsing: Many compilers use a stack for parsing the syntax of

expressions.
• Backtracking: It can be used for back traversal of steps in a problem

solution.
• Parenthesis Checking: Stack is used to check the proper opening

and closing of parenthesis.
• String Reversal: It can be used to reverse a string.
• Function Call: Stack is used to keep information about the active

functions or subroutines.

Visit : python.mykvs.in for regular updates

Data-structures

Using List as Stack in Python:
The concept of Stack implementation is easy in Python ,
because it support inbuilt functions (append() and pop())
for stack implementation.By Using these functions make
the code short and simple for stack implementation.
To add an item to the top of the list, i.e., to push an item,
we use append() function and to pop out an element we
use pop() function. These functions work quiet efficiently
and fast in end operations.

Visit : python.mykvs.in for regular updates

Data-structures

Stack e.g. program:

stack = [5, 9, 3]
stack.append(7)
stack.append(11)
print(stack)
print(stack.pop())
print(stack)
print(stack.pop())
print(stack)

Visit : python.mykvs.in for regular updates

OUTPUT

[5, 9, 3, 7, 11]
11
[5, 9, 3, 7]
7
[5, 9, 3]

Data-structures

class Stack:
def __init__(self):

self.items = []
def is_empty(self):

return self.items == []
def push(self, data):

self.items.append(data)
def pop(self):

return self.items.pop()
s = Stack()
while True:

print('Press 1 for push')
print('Press 2 for pop')
print('Press 3 for quit')
do = int(input('What would you like to do'))
if do == 1:

n=int(input("enter a number to push"))
s.push(n)

elif do == 2:
if s.is_empty():

print('Stack is empty.')
else:

print('Popped value: ', s.pop())
elif operation == 3:

break #Note :- Copy and paste above code in python file then execute that file

Visit : python.mykvs.in for regular updates

Stack interactive program:

Data-structures

Queue:
Queue is a data structures that is based on First In First Out
(FIFO) stretagy ,i.e. the first element that is added to the queue
is the first one to be removed.

Visit : python.mykvs.in for regular updates

• Queue follows the FIFO (First - In -
First Out) structure.

• According to its FIFO structure,
element inserted first will also be
removed first.

• In a queue, one end is always used
to insert data (enqueue) and the
other is used to delete data
(dequeue), because queue is open
at both its ends.

Data-structures

Applications of Queue:
Synchronization : When data are transferred to asynch
devices then it is used to synchronized.
Scheduling : When a resource is shared among
multiple consumers.
Searching : Like breadth first search in graph theory.
Interrupt handling : Handling of multiple interrupt as
the order they arrive.

Visit : python.mykvs.in for regular updates

Data-structures

Using List as Queue in Python:
The concept of Queue implementation is easy in
Python , because it support inbuilt functions (insert()
and pop()) for queue implementation.By Using these
functions make the code short and simple for queue
implementation.
To add an item at front of the queue, i.e., to enqueue
an item, we use insert() function and to dequeue an
element we use pop() function. These functions work
quiet efficiently and fast in end operations.

Visit : python.mykvs.in for regular updates

Data-structures

Queue e.g. program:

queue = [5, 3, 7]
print(queue)
queue.insert(0,53)
print(queue)
queue.insert(0,29)
print(queue)
print(queue.pop())
print(queue.pop())
print(queue)

Visit : python.mykvs.in for regular updates

OUTPUT
[5, 3, 7]

[53, 5, 3, 7]

[29, 53, 5, 3, 7]
7
3
[29, 53, 5]

Data-structures

Queue Interactive program:
class Queue:

def __init__(self):
self.items = []

def isEmpty(self):
return self.items == []

def enqueue(self, item):
self.items.insert(0,item)

def dequeue(self):
return self.items.pop()

def size(self):
return len(self.items)

q = Queue()
while True:

print('Press 1 for insert')
print('Press 2 for delete')
print('Press 3 for quit')
do = int(input('What would you like to do'))
if do == 1:

n=int(input("enter a number to push"))
q.enqueue(n)

elif do == 2:
if q.isEmpty():

print('Queue is empty.')
else:

print('Deleted value: ', q.dequeue())
elif operation == 3:

break

#Note :- Copy and paste above code in python file then execute that file

Visit : python.mykvs.in for regular updates

Data-structures

