
Chapter 10 :

Informatics

Practices

Class XII (As per

CBSE Board)
Web application

development
using Django

Visit : python.mykvs.in for regular updates

New

Syllabus

2019-20

Django

Visit : python.mykvs.in for regular updates

Django is an open source web application development framework. It was

Named after famous Guitarist “Django Reinhardt”.it was Developed by

Adrian Holovaty and Jacob Kaplan-moss at World Online News for

efficient development in python .It was Open sourced in 2005 and it’s first

Version released September 3, 2008.

It follows the principle of “Don’t Repeat Yourself”. Means keeping the

code simple and non repeating. Django is also a high level, MVT architect

which stands for Model View Template.

Features of Django

• Fast: -encourages rapid development

• Tons of Packages: that help us to develop websites faster and easier.

• Secure: It helps the developers to avoid many common security

mistakes, such as SQL injection, cross-site scripting, csrf and

clickjacking.

• Versatile –can develop all sort of things – like content management

systems ,social networks,scientific computing platforms etc.

A Web application (Web app) is an application program that is stored on a

remote server and delivered to a browser through internet.

Django

Visit : python.mykvs.in for regular updates

Django architecture

Django follows a MVC- MVT architecture.

MVC stands for Model View Controller.
brow

ser

url

Conf

g
view

mode

l

temp

late

RequestResponseModel – Model is used for storing

and maintaining data and work as a

backend to define database.

Views – In Django templates, View is

all about the which user is seeing.

Templates and views are designed in

html.

Controller – business logic which

interact with the model and the view.

Django

Visit : python.mykvs.in for regular updates

Django Installation – Method1

Step 1: Go to : https://www.djangoproject.com/download/ , Read

the release notes.

Step 2: Type the pip command in command prompt

pip install django

After its completion,installation part will be completed

https://www.djangoproject.com/download/

Django

Visit : python.mykvs.in for regular updates

Django Installation – Method2

Step 1- open command prompt in

windows(type cmd in windows search)

Step 2 – type command easy_install django

and press enter

Wait for few minutes.

After installation a message will be shown

Finished processing dependencies for

django

Django

Visit : python.mykvs.in for regular updates

Building Web Application in Django
• Create a folder on computer. E.g. create a folder named demo in c drive.

• Open command prompt through cmd command in search option of

window.

• Move to folder demo in command prompt(using cd command) cd c:\demo

• Run the following command to create project

c:\demo> django-admin startproject myproject

It will create list of files in demo->myproject

• Move to the folder where manage.py file is stored.

c:\demo>cd c:\demo\myproject

manage.py – used as command to interact with this

Django project.

myproject/ – It is actual Python package.

init.py–tells the python to treated like a python

package.

settings.py – to manage settings of project.

urls.py – to maps website.

wsgi.py – It serves as an entry point for WSGI

compatible web servers.

Django

Visit : python.mykvs.in for regular updates

Building Web Application in Django
• Type the following command to create app there

python manage.py startapp webapp

it will create other files in myproject/webapp

• Next, we need to import our application manually inside

project settings.open myproject/settings.py in windows edit

with ide and add webapp manually as below code and save it.

INSTALLED_APPS = [

'webapp',

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

]

• now. Open webapp/views.py and put below code in it:

from django.shortcuts import render

from django.http import HttpResponse

def index(request):

return HttpResponse("<H2>Hi ,it is our first django webapp </H2>")

Django

Visit : python.mykvs.in for regular updates

Building Web Application in Django
• Now we need to map this view to a URL.so create a new python file

“urls.py” inside our webapp.In webapp/urls.py include the following

code:

from django.conf.urls import url

from . import views

urlpatterns = [

url(r'^$', views.index, name='index'),

]

In the above code, we have referenced a view which will return index.

here url pattern is a regular expression where ^ stands beginning of

the string and $ stands for the end.

• Open myproject/urls.py file and write the below code to point the

root URLconf at the webapp.urls module.

from django.conf.urls import include, url

from django.contrib import admin

urlpatterns = [

url(r'^webapp/', include('webapp.urls')),

]

• First move to folder of manage.py file,run the server with command

python manage.py runserver

After running the server, go to http://localhost:8000/webapp/

Note – for above development pycharm(trial version available) like

In any browser

ide can be used

Django

Visit : python.mykvs.in for regular updates

Download the demo project from the link given below

Click here

1. Download will start

2. After download completes

3. Extract all files on c drive ->it will create demo folder

4. Open command prompt and move to

c:\demo\myproject

5. Write command python manage.py runserver

6. Open any browser and write url

http://localhost:8000/webapp/

7. It will display the view/page

NOTE :- django must be installed to run the server and

webapp

http://python.mykvs.in/presentation/class xii/demo.zip

Django

Visit : python.mykvs.in for regular updates

Functional architecture of django webapplication

WEB BROWSER

Caching

framework

URL Dispatcher

Template

View

Model

Database

1. URL dispatcher(urls.py)-> requests

url to view function and call it.if cache

version available then cache copy

Will be returned

2. View function(view.py)-> perform

display Part and database interaction

3. model(models.py) -> define data in

Pythond and interact with

data(typically

Mysql,postgress,sqlite etc)

4. Templates -> return html pages with

the help of django template language.

5. After any request the view returns

HTTP response object to the web

browser ,generally to display value

Django

Visit : python.mykvs.in for regular updates

Django Request and Response life cycle

Click

Browser
Request

Response

Server

Data

Page

Your computer Internet Data center

Django uses request and response objects to pass state through the system.

When a page is requested, Django creates an HttpRequest object which contains

metadata about the request. Then Django loads the appropriate view, passing

the HttpRequest as the first argument to the view function. Each view is

responsible for returning an HttpResponse object.

Django

Visit : python.mykvs.in for regular updates

Attribute Description

HttpRequest.scheme Representing the scheme of request (HTTP or HTTPs
usually).

HttpRequest.body Returns raw HTTP request body as byte string.

HttpRequest.path It returns the full path to the requested page but
not include the scheme/domain.

HttpRequest.path_info It shows path info portion of the path,no matter
what Web server is being used

HttpRequest.method It shows the HTTP method used in the request.like
get or post

HttpRequest.encoding It shows the current encoding used to decode form
submission data.

HttpRequest.content_type It shows the MIME type of the request, parsed from
the CONTENT_TYPE header.

HttpRequest.content_params It returns a dictionary of key/value parameters
included in the CONTENT_TYPE header.

HttpRequest.GET It returns a dictionary-like object containing all
given HTTP GET parameters.

HttpRequest.POST It is a dictionary-like object containing all given
HTTP POST parameters.

HttpRequest.COOKIES It returns all cookies available.

HttpRequest.FILES It contains all uploaded files.

HttpRequest.META It shows all available Http headers.

HttpRequest.resolver_match It contains an instance of ResolverMatch
representing the resolved URL.

Django HttpRequest Attributes

Django

Visit : python.mykvs.in for regular updates

Django HttpRequest Methods

Attribute Description

HttpRequest.get_host() Returns the original host of the request.

HttpRequest.get_port() Returns the originating port of the
request.

HttpRequest.get_full_path() Returns the path, plus an appended
query string, if applicable.

HttpRequest.build_absolute_uri (location) Returns the absolute URI form of
location.

HttpRequest.get_signed_cookie (key,
default=RAISE_ERROR, salt='',
max_age=None)

Returns a cookie value for a signed
cookie

HttpRequest.is_secure() Returns True if the request is secure;
that is, if it was made with HTTPS or
not.

HttpRequest.is_ajax() Returns True if the request was made
via an XMLHttpRequest.

Django

Visit : python.mykvs.in for regular updates

Django HttpResponse Attributes

Attribute Description

HttpResponse.content A bytestring encoded from a string, if
necessary.

HttpResponse.charset A string denoting the charset in which
the response will be encoded.

HttpResponse.status_code It is an HTTP status code for the
response.

HttpResponse.reason_phrase The HTTP reason phrase for the
response.

HttpResponse.streaming It is false by default.

HttpResponse.closed It is True if the response has been
closed.

Django

Visit : python.mykvs.in for regular updates

Django HttpResponse Methods

Method Description

HttpResponse.__init__(content='',
content_type=None, status=200, reason=None,
charset=None)

To instantiate an HttpResponse object with the
given page content and content type.

HttpResponse.__setitem__(header, value) It is used to set the given header name to the
given value.

HttpResponse.__delitem__(header) It deletes the header with the given name.

HttpResponse.__getitem__(header) It returns the value for the given header name.

HttpResponse.has_header(header) It returns either True or False based on a case-
insensitive check for a header with the provided
name.

HttpResponse.setdefault(header, value) It is used to set default header.

HttpResponse.write(content) It is used to create response object of file-like
object.

HttpResponse.flush() It is used to flush the response object.

HttpResponse.tell() This method makes an HttpResponse instance a
file-like object.

HttpResponse.getvalue() It is used to get the value of
HttpResponse.content.

HttpResponse.readable() This method is used to create stream-like object
of HttpResponse class.

HttpResponse.seekable() It is used to make response object seekable.

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a

GET

For any interactive web application ,we have to develop

web application in two parts

1. Front end – Generally any html form where user enters

data

2. Back end – where data are processed and stored

User enter data on html form and then submit these

data,which moves to the server with the help of

HttpRequest then these data are processed at the server

as per need and then returns the result to requesting

browser with the help of HttpResponse object in the form

of html

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a GET
Here we are developing interactive web app step wise

• Create a folder on computer. E.g. create a folder named demo1 in c drive.

• Open command prompt through cmd command in search option of window.

• Move to folder demo1 in command prompt(using cd command) cd c:\demo1

• Run the following command to create project

c:\demo1> django-admin startproject myproject

It will create list of files in demo1->myproject

• Move to the folder where manage.py file is stored.

c:\demo1>cd c:\demo1\myproject

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a GET
• Type the following command to create app there

python manage.py startapp webapp

it will create other files in myproject/webapp

• Next, we need to import our application manually inside project settings.open

myproject/settings.py in windows edit with ide and add webapp manually as below code

and save it.

INSTALLED_APPS = [

'webapp',

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

]

• now. Open webapp/views.py and put below code in it:

from django.shortcuts import render

from django.http import HttpResponse

def search_form(request):

return render(request, 'webapp/search_form.html')

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a GET
• Next step is to create the template

• Create a new \templates folder inside webapp folder. Then go ahead and create

another folder webapp inside the templates folder.Our final folder structure will be

webapp\templates\webapp\ .

This inner webapp folder is important for namespacing templates. Because Django will

search all apps for a matching template, creating a namespace for the app templates

ensures that Django uses the correct template if two apps used the same template name.

• Create the following search_form.html file and save it to new folder webapp:
<html>

<head>

<title>Search</title>

</head>

<body>

<form action="/search/" method="get">

<input type="text" name="q">

<input type="submit" value="Search">

</form>

</body>

</html>

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a GET
• Now we need to create a URLconf so Django can find our new view.for this create

urls.py file in base webapp folder

mysite\books\urls.py

from django.conf.urls import url

from webapp import views

urlpatterns = [

url(r'^search-form/$', views.search_form),

]

• when Django searches for URL patterns, it will only search the base myproject\urls.py

file, unless we explicitly include the URL patterns from other apps. So let’s go ahead

and modify our site urlpatterns :

myproject\urls.py

from django.contrib import admin

from django.urls import path

from django.conf.urls import include, url

urlpatterns = [

url(r'^', include('webapp.urls')),

]

• First move to folder of manage.py file,run the server with command

python manage.py runserver

and then visit http://127.0.0.1:8000/search-form/ , we’ll see the search interface.

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a GET
• If we press search button then Django 404 error is displayed because no seach part is

defined.

• To fix it ,make changes webapp/urls.py file like below code

from django.conf.urls import url

from webapp import views

urlpatterns = [

url(r'^search-form/$', views.search_form),

url(r'^search/$', views.search),

]

• And make change webapp/views.py file like below code

from django.shortcuts import render

from django.http import HttpResponse

def search_form(request):

return render(request, 'webapp/search_form.html')

def search(request):

if 'q' in request.GET:

message = 'You searched for: %r' % request.GET['q']

else:

message = 'You submitted an empty form.'

return HttpResponse(message)

• Now first move to folder of manage.py file,run the server with command

python manage.py runserver

and then visit http://127.0.0.1:8000/search-form/ , press search button after text entry.

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a GET

• In above development The HTML <form> defines a variable q . When it’s submitted,

the value of q is sent via GET (method="get") to the URL /search/ .

• The Django view that handles the URL /search/ (search()) has access to the q value in

request.GET .An important thing to point out here is that we explicitly check that 'q'

exists in request.GET

Query String Parameters

Because GET data is passed in the query string (e.g., /search/?q=django), we can

use request.GET to access query string variables.

Use GET when the act of submitting the form is just a request to “get” data. Use POST

whenever the act of submitting the form will have some side effect – changing data, or

sending an e-mail,or something else that’s beyond simple display of data means

encoded data move ,which are not traceable through URL.

Q.1 Develop a web application which prompt two numbers and display the sum of these

two numbers after pressing sum button.

Q.2 Develop a web application which prompt principle amount,rate and time and display

simple interest.

Django

Visit : python.mykvs.in for regular updates

Download the demo1 project from the link given below

Click here

1. Download will start

2. After download completes

3. Extract all files on c drive ->it will create demo1 folder

4. Open command prompt and move to

c:\demo1\myproject

5. Write command python manage.py runserver

6. Open any browser and write url

http://127.0.0.1:8000/search-form/

7. It will display the view/page

NOTE :- django must be installed to run the server and

webapp

http://python.mykvs.in/presentation/class xii/demo1.zip

Django

Visit : python.mykvs.in for regular updates

Differences between the GET and POST methods in form submitting

GET Method

• GET requests can be cached

• GET requests remain in the

browser history

• GET requests can be

bookmarked

• GET requests should never be

used when dealing with

sensitive data like password

• GET requests have length

restrictions

• GET requests is only used to

request data (not modify)

POST Method

• POST requests are never

cached

• POST requests do not remain

in the browser history

• POST requests cannot be

bookmarked

• POST requests have no

restrictions on data length

• URL query string is encoded

so cant be used for malicious

purpose

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a POST

Now we are acquainted with web application development in

Django and using GET Method.So using POST method is very

easy.

To learn POST method make below changes in the existing

Demo1 project.

1. Replace the existing code with following code in

webapp/views.py file

from django.shortcuts import render

from django.http import HttpResponse

def search_form(request):

return render(request, 'webapp/search_form.html')

def sum_number(request):

if request.method=='POST':

a=request.POST.get('n1')

b=request.POST.get('n2')

c=int(a)+int(b)

return HttpResponse("sum='"+str(c)+"'")

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a POST

2. Replace the existing code with following code in

webapp/templates/webapp/search_form.html file

<html>

<head>

<title>sum two numbers</title>

</head>

<body>

<form action="/getdata/" method="post">

{% csrf_token %}

Enter first number<input type="text" name="n1">

Enter second number<input type="text" name="n2">

<input type="submit" value="Sum">

</form>

</body>

</html>

Django

Visit : python.mykvs.in for regular updates

Minimal Django based web application that parses a POST

3. Replace the existing code with following code in

webapp/urls.py file

from django.conf.urls import url

from webapp import views

urlpatterns = [

url(r'^search-form/$', views.search_form),

url(r'^getdata/$', views.sum_number),

]

• Now Open command prompt and move to

c:\demo1\myproject

• Write command python manage.py runserver

• Open any browser and write url http://127.0.0.1:8000/search-

form/

• It will display the view/page(search_html) with two text

boxes,user have to enter two numbers and press sum

button.values will be sent to server using POST method

without displaying in URL and will be processed with the

help of views.py file and result will be displayed

Django

Visit : python.mykvs.in for regular updates

Download the demo1 project for POST Method from the

link given below

Click here

1. Download will start

2. After download completes

3. Extract all files on c drive ->it will create demo2 folder

4. Open command prompt and move to

c:\demo2\myproject

5. Write command python manage.py runserver

6. Open any browser and write url

http://127.0.0.1:8000/search-form/

7. It will display the view/page

NOTE:-django must be installed to run the server and webapp

http://python.mykvs.in/presentation/class xii/demo2.zip

Django

Visit : python.mykvs.in for regular updates

Writes the fields to a file – flat file

The File object- Internally, Django uses a django.core.files.File instance any time

it needs to represent a file.Now Open demo1 project and overwrite below code in

webapp/views.py file

from django.shortcuts import render

from django.http import HttpResponse

from django.core.files import File #import django file handling library

def search_form(request):

return render(request, 'webapp/search_form.html')

def sum_number(request):

if request.method=='POST':

a=request.POST.get('n1')

b=request.POST.get('n2')

c=int(a)+int(b)

#file handling code

f = open('a.txt', 'w')

myfile = File(f)

myfile.write(str(c))

myfile.close()

return HttpResponse("sum='"+str(c)+"'")

Flat file writing code

Here file a.txt is opened in f

further referenced by myfile

to write value of c in string

form ,then file is closed and

at last result is also shown

over browser

Django

Visit : python.mykvs.in for regular updates

Writes the fields to a file – flat file
1. Open command prompt and move to c:\demo1\myproject

2. Write command python manage.py runserver

3. Open any browser and write url http://127.0.0.1:8000/search-form/

It will display two text boxes ,after entering value and press sum

button. Result will be stored in a file a.txt (@ C:\demo1\myproject) as

well as displayed over browser.

We can open a.txt file and find the result in it also.

Python file handling concepts can be used for other file handling

operations

Django

Visit : python.mykvs.in for regular updates

Read and Writes the fields on a file – flat file
#Make changes in views.py as below code for write/read operation
from django.shortcuts import render

from django.http import HttpResponse

from django.core.files import File

def search_form(request):

return render(request, 'webapp/search_form.html')

def sum_number(request):

if request.method=='POST':

a=request.POST.get('n1')

b=request.POST.get('n2')

c=int(a)+int(b)

f = open('a.txt', 'w')

myfile = File(f)

myfile.write(str(a)+" ")

myfile.write(str(b)+" ")

myfile.write(str(c)+" ")

myfile.close()

f = open('a.txt', 'r')

t=''

for text in f.readlines():

for word in text.split():

t=t+word+'
'

myfile.close()

return HttpResponse(t)

Writes the value of a,b and c on a.txt file

separated by space through file object’s

write method.

Read the line by line through first loop and

each word is separated in inner loop with

the help of split method.

Each word is appended as html text in t

along with
 tag

Django

Visit : python.mykvs.in for regular updates

Writes the fields to a file – CSV file
Python comes with a CSV library, csv. The key to using it with Django is that the csv

module’s CSV-creation capability acts on file-like objects, and Django’s HttpResponse

objects are also file-like objects.Make changes in views.py file for csv file creation.

from django.shortcuts import render

from django.http import HttpResponse

import csv

def search_form(request):

return render(request, 'webapp/search_form.html')

def sum_number(request):

if request.method=='POST':

a=request.POST.get('n1')

b=request.POST.get('n2')

c=int(a)+int(b)

#write csv file

response = HttpResponse(content_type='text/csv')

response['Content-Disposition'] = 'attachment; filename=“mycsvfile.csv"'

writer = csv.writer(response)

writer.writerow([a, b, c])

return response

Django

Visit : python.mykvs.in for regular updates

Writes the fields to a file – CSV file
In the program following points to be noted

• The response gets a special MIME type, text/csv. This tells browsers that the

document is a CSV file, rather than an HTML file.

• The response gets an additional Content-Disposition header, which contains the

name of the CSV file.

• Hooking into the CSV-generation API is easy: Just pass response as the first

argument to csv.writer. The csv.writer function expects a file-like object, and

HttpResponse objects

• For each row in your CSV file, call writer.writerow, passing it an iterable object such

as a list or tuple.

