
Chapter 6 :

Computer Science

Class XII (As per

CBSE Board) Idea of
efficiency
- Programming

Visit : python.mykvs.in for regular updates

New

Syllabus

2019-20

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Efficient programming is a manner of

programming that, when the program is executed,

it uses a low amount of overall resources

pertaining to specially computer hardware. A

program is designed by a human being, and

different human beings may use different

algorithms, or sequences of codes, to perform

particular tasks, so the efficiency of such different

programs varies, depend upon the number of

resources being used. Practicing to create a low

size(number of line of codes) and low resource

algorithm results in an efficient program.

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Performance defined as inversely proportional to

the wall clock time:-

Wall clock time/elapsed time: time to complete a

task as seen by the user. In wall clock timing all

kind of time is included ,e.g. operating system

overhead or potentially interfering other

applications etc.

CPU time: does not include time slices

introduced by external sources (e.g. running

other applications).

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Performance defined as inversely proportional to

the wall clock time:-

To maximize performance, minimize execution

time

performance = 1 / execution_timeX

“X is n times faster than Y”

– Execution time on Y is n times longer than on X

Performancex Executiontimey

-------------------- = ---------------------- = n

Performancey Executiontimex

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Performance defined as inversely proportional to the

wall clock time:-

E.g.

If a particular desktop runs a program in 60 seconds

and a laptop runs the same program in 90 seconds,

how much faster is the desktop than the laptop?

= Performancedesktop/ Performancelaptop

= (1/60)/(1/90) = 1.5

So, the desktop is 1.5 times faster than the laptop

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Count the number of operations a piece of code is

performing:-
To compute the number of operations in a piece of code,then simply

count the number of arithmetic operations+other operation that code is

performing. All operations (addition, subtraction, multiplication, and

division) are usually counted to be the same, which is not exactly true,

since multiplication includes several additions and division includes

several multiplications when actually executed by a computer. However,

we are looking for an estimate here, so it is reasonable to assume that on

average, all operations count in the same manner.

Here is an example (just for illustration):

r=0

for i in range(4):

for n in range(4):

r = r+(i*n)

print(r)

For each r there is 1 multiplications, 1 addition and 1 assignment

resulting in 3 operations. This loop is executed 4X4 times, so there are

(4X4)r operations. This is the the order of the code. In this example, its is

O(42r).

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Measure the time taken by a Python Program

To measure the script execution time is simply possible by

using time built-in Python module. time() function is used

to count the number of seconds elapsed since the epoch.

e.g.program
import time

start = time.time()

r=0

for i in range(400):

for n in range(400):

r = r+(i*n)

print(r)

end = time.time()

print(end - start)

OUTPUT

6368040000

0.12480020523071289 #TIME TAKE TO EXECUTE THE PYTHON SCRIPT

Idea of efficiency - Programming

Visit : python.mykvs.in for regular updates

Compare programs for time efficiency
With the help of time() function,we can compare two/more programs with different algo

for same problem that which one take less time.Below two code scripts are for prime no

time efficiency purpose.

import time

start = time.time()

a=int(input("Enter number: "))

k=0

for i in range(2,a//2+1):

if(a%i==0):

k=k+1

if(k<=0):

print("Number is prime")

else:

print("Number isn't prime")

end = time.time()

print(end - start)

OUTPUT

Enter number: 5

Number is prime

1.689096450805664

import time

start = time.time()

number = int(input("Enter any number: "))

if number > 1:

for i in range(2, number):

if (number % i) == 0:

print(number, “Not a prime no")

break

else:

print(number, "is a prime number")

else:

print(number, "is not a prime number")

end = time.time()

print(end - start)
OUTPUT

Enter any number: 5

5 is a prime number

1.909109115600586

